




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年河南省周口市项城一中中考数学二模试卷
一、选择题
1.(3分)下列四个数中,绝对值最大的数是()
A.-2B._AC.0D.3
22
2.(3分)大兴国际机场航站楼是全球唯一一座“双进双出”的航站楼,也是世界施工技术
难度最高的航站楼,航站楼一共使用了12800块玻璃()
A.12.8X103B.I.28X103C.1.28X104D.0.128X105
3.(3分)已知四边形N3CZ)是平行四边形,下列结论中正确的有()
①当时,它是菱形;②当/C_LAD时;
③当//3C=90°时,它是矩形;④当时
A.3个B.4个C.1个D.2个
4.(3分)下列几何体中,其主视图、左视图、俯视图完全相同的是()
口]
二£
5.(3分)下列式子运算正确的是()
A.3x+4x=7x2B.(/>)3==X273
C.x3*x4=x7D.(x3)4=
6.(3分)如图,在平行四边形48CQ中,/为5c的中点,使。氏AD=1:3,连接EF
交DC于点、G^DEG:SKFG等于()
E
AL------------名
A.4:9B.2:3C.9:4D.3:2
第1页(共24页)
7.(3分)如图,下列条件中,能判定4B〃CD的是()
B.Z2=Z3
C.N1=N5D./4+/4DC=180°
8.(3分)如图为的直径,。为。。上一点,若/。=20°,则乙48。的度数为()
25°C.30°D.35°
9.(3分)如图,在平面直角坐标系中,O是菱形48。对角线8。的中点,ZA=60°,
将菱形绕点。顺时针旋转,则旋转后点C的对应点的坐标是(
A.(0,2通)B.(2,-4)C.(273,0)D.(0,-2正)
10.(3分)如图1.在矩形A8CD中,点P从点/出发,匀速沿48-AD向点。运动,设
点尸的运动距离为x,£>尸的长为y,则当点尸为中点时,。尸的长为()
第2页(共24页)
A.5B.82^13
二.填空题
11.(3分)函数丫工工中自变量x的取值范围是
x-2
12.(3分)如果关于x的方程x2-2x-〃2=0有两个相等的实数根,那么m的值是
13.(3分)分解因式:(/+庐)2-花庐二
14.(3分)如图,扇形/O8中,ZAOB=90a,。分别在CU,金上,连接8C,点。,O
关于直线8C对称,AD,则图中阴影部分的面积为
15.(3分)如图,在矩形48CD中,已知/2=10,动点尸从点。出发,以每秒2个单位
的速度沿线段。。向终点C运动,连接NP,把沿着么?翻折得到作射线
16.(1)计算:+(-^2022)°+(-1)-1
(2)化简:与一・
a-9a-3
第3页(共24页)
3x-5<2x
17.(1)解不等式组_i,并将其解集在数轴上表示出来.
号x>2x+l
(2)解方程上_0」_.
x+322x+6
18.如图,反比例函数y=K(x>0)的图象经过点/(2,4),NC平分交x轴于
x
点C
(1)求反比例函数的表达式.
(2)尺规作图:作出线段NC的垂直平分线.分别与。/、4B交于点、D、£.(要求:不
写作法,保留作图痕迹)
(3)在(2)的条件下,连接CD求证:CD//AB.
19.第31届世界大学生运动会于2023年7月28日在成都举行,主火炬塔位于东安湖体育
公园,亮灯之夜,10余道象征太阳光芒的螺旋线全部点亮,璀璨绚丽(如图1).小杰同
学想要通过测量及计算了解火炬塔CD的大致高度,当他步行至点A处,再步行20米至
点2处,测得此时塔顶C的仰角为65°(如图2所示,点在同一条直线上)(sin65°
-0.91,cos65°-0.42,tan65°心2.14,sin42°心0.67,cos42°-0.74,tan42°-0.90,
结果保留整数)
图1图2
20.开学期间,“艾上雪”品牌书包以其样式新颖,寓意美好,发现第一周男生包的销量是
100个,女生包销量是120个;第二周男生包的销量是180个,女生包的销量是200个
第4页(共24页)
(1)每个男生包和女生包的利润分别是多少元?
(2)在两种书包的进价不变的情况下,第三周店主调整了价格,男生包每个涨价加元,
统计后发现,第三周两种类型书包的销量一样,女生包的利润达2600元.求出机的值.
21.中国5/级旅游景区开封市清明上河园中水车园的水车由立式水轮、竹筒、支撑架、水
槽等部件组成,如图是水车园中半径为5加的水车灌田的简化示意图,立式水轮。。在水
流的作用下利用竹筒将水运送到点/处,。。与水面交于点£C,且点瓦C,且4小C
=NPBA,若点P到点C的距离为32〃?,AB.
(1)求证:AP是。。的切线;
(2)请求出水槽/P的长度.
22.如图,在某中学的一场篮球赛中,李明在距离篮圈中心5.5加(水平距离),球出手时离
地面2.2小,当篮球运行的水平距离为时达到离地面的最大高度4%已知篮球在空中
的运行路线为一条抛物线
(1)建立如图所示的平面直角坐标系,求篮球运动路线所在抛物线的函数解析式;
(2)场边看球的小丽认为,李明投出的此球不能命中篮圈中心.请通过计算说明小丽判
断的正确性;
(3)在球出手后,未达到最高点时,被防守队员拦截下来称为盖帽.但球到达最高点后,
防守队员再出手拦截,属于犯规.在(1),防守方球员张亮前来盖帽,已知张亮的最大
23.小贺同学在数学探究课上,用几何画板进行了如下操作:首先画一个正方形一
条线段。尸(。尸</8),OP的长为半径,画。/分别交N3于点£.交于点G.过点
第5页(共24页)
E,的垂线交于点尸,易得四边形/EFG也是正方形
图1
(1)【探究发现】如图1,BE与DG的大小和位置关系:
(2)【尝试证明】如图2,将正方形NEFG绕圆心/转动,在旋转过程中(1)的关系还
存在吗?请说明理由.
(3)【思维拓展】如图3,若48=20尸=4,则:
①在旋转过程中,点3,A,G三点共线时:
②在旋转过程中,。尸的最大值是.
第6页(共24页)
2024年河南省周口市项城一中中考数学二模试卷
参考答案与试题解析
一、选择题
1.(3分)下列四个数中,绝对值最大的数是()
A.-2B._AC.0D.3
22
【解答】解:|-2|=2,|5|=0工尸工,
22
V7<JL<JL<2,
22
•••四个数中,绝对值最大的数是-6.
故选:A.
2.(3分)大兴国际机场航站楼是全球唯一一座“双进双出”的航站楼,也是世界施工技术
难度最高的航站楼,航站楼一共使用了12800块玻璃()
A.12.8X103B.1.28X103C.1.28X104D.0.128X105
【解答】解:12800=1.28X1()4,
故选:C.
3.(3分)已知四边形N3CD是平行四边形,下列结论中正确的有()
①当时,它是菱形;②当时;
③当/ABC=90°时,它是矩形;④当时
A.3个B.4个C.1个D.2个
【解答】解:;四边形/BCD是平行四边形,
...当时,它是菱形,
当时,它是菱形,
当/N5C=90°时,它是矩形,
当时,它是矩形,
故选:A.
4.(3分)下列几何体中,其主视图、左视图、俯视图完全相同的是()
第7页(共24页)
【解答】解:A.圆柱的主视图和左视图都是矩形,不符合题意;
B.圆锥的主视图和左视图都是等腰三角形,不符合题意;
C.三棱柱的主视图和左视图都是矩形,不符合题意;
D.球的三视图都是大小相同的圆.
故选:D.
5.(3分)下列式子运算正确的是()
A.3x+4x=7x2B.(X2}1)3=x2y3
C.x3,x4=x7D.(x3)4=x7
【解答】解:43x与4x是同类项,可以合并,/不符合题意;
B.根据“积的乘方,再把所得的积相乘”知(丁))3=3,,8不符合题意;
C.根据“同底数幕相乘,指数相力口”知J・X4=X6+4=X7,。符合题意;
。.根据“塞的乘方,指数相乘”知(/)4=X12,。不符合题意,
故选:C.
6.(3分)如图,在平行四边形N5C〃中,/为8c的中点,使。E:AD=1:3,连接所
交.DC于点、GADEG:S&CFG等于()
A.4:9B.2:3C.9:4D.3:2
【解答】解:设DE=x,AD=3x,
在EJABCD中,
:.AD=BC=3x,
:点尸为8C的中点,
:.CF=^L,
2
第8页(共24页)
■:DE//BC,
:.△DEGs^CFG,
S^DEGh(DF)2=(2)2=旦,
^ACFGCF39
故选:A.
7.(3分)如图,下列条件中,能判定45〃CQ的是()
A.Z1=Z4B.Z2=Z3
C.Z1=Z5D.N4+N/OC=180°
【解答】解:/、Z1=Z4不能判定AB//CD;
B、VZ6=Z3,符合题意;
。、VZ1=Z7,不能判定45〃CD;
D、VZ4+Z^DC=180°,不能判定48〃CD
故选:B.
8.(3分)如图为。。的直径,。为。。上一点,若/。=20。,则乙4助的度数为()
A
A.20°B.25°C.30°D.35°
【解答】解:如图,连接/C,
,:AB为OO的直径,
第9页(共24页)
AZACB=90°,
/.ZA+ZABC=90°,
:/。=//=20°,
/.ZABC=10°,
■:BD平分N4BC,
:.N4BD=L/4BC=35°,
2
故选:D.
9.(3分)如图,在平面直角坐标系中,。是菱形ABCD对角线AD的中点,//=60°,
将菱形/BCD绕点。顺时针旋转,则旋转后点C的对应点的坐标是()
A.(0,273)B.(2,-4)C.(2«,0)D.(0,-2f)
【解答】解:根据菱形的对称性可得:当点。落在x轴正半轴上时,
4、B、C均在坐标轴上,
VZBAD=60°,AD=4,
:.ZOAD^30°,
:.OD=2,
'/°=7AD7-0D2=V16-4=OC,
第10页(共24页)
故选:D.
10.(3分)如图1.在矩形N8C〃中,点尸从点/出发,匀速沿向点。运动,设
点P的运动距离为x,。尸的长为修则当点P为中点时,OP的长为()
【解答】解:由图2可得:
当x=0时,y—4,
当点尸的运动距离为0时,DP的长为6,
.•.当/P=8时,AD=DP=6,
由图2可得:
当x=a时,y最大=。+6,
当点尸的运动距离为°时,。产的值最大,
:当点尸运动到和点3重合时,DP的值最大,
.".AB=a,BD=a+2,
在RtZX/DB中,AD2+AB4=DB2,
,36+。2=(。+2)2,
・・。=8,
:・AB=7,
;点、P为4B的中点,
:.AP=1.AB=5,
2
DP=AD2+AP2=V72+48=2V13>
故选:D.
二.填空题
第11页(共24页)
11.(3分)函数y--中自变量X的取值范围是3
x-2
【解答】解:由题意得:x-2W0,
解得:xW8,
故答案为:%W2.
12.(3分)如果关于%的方程,-2%-冽=0有两个相等的实数根,那么m的值是-
1_.
【解答】解:・・,方程-冽=5有两个相等的实数根,
A=(-2)2+6m=0,
解得m=-1,
故答案为:-8.
13.(3分)分解因式:(<22+ZJ2)2-46/262=(a+6)?(a-b)2.
【解答】解:($+扭)4—4•2,
=(a2+fe2-5ab)(/+庐+公/?),
=(a-b)2(〃+b)2.
14.(3分)如图,扇形中,ZAOB=90°,。分别在CM,右上,连接2C,点。,O
关于直线5c对称,俞,则图中阴影部分的面积为_6冗-3愿_.
【解答】解:连接OD,BD
':OD=OB,
第12页(共24页)
:.OB=OD=BD,
:.ZODB=ZOBD=ABOD=60°,
AZAOD=90°-60°=30°,
.30HXOA寸
•----------------=71,
180
解得:04=6,
:.OB=OD=BD=OA=6,
9:ODLBC,
o1
AZOBC=ZDBC=^-ZOBD=30°OF=DF二点)D=3,
/D
在Rt.OBC中,Be%^
BF=V0B2-0F2=6V3;
>
•■SACDB-|xBCXDF^-X2V3X3=8V3
60兀x66
S扇形OBD--菰-—671,
SA0BD-joDXBF=yX3X3Vs=W3)
.\S阴影=S扇形050_S△OBD~^~S^BCD
=6兀-4百+蓊=6兀-3巾-
故答案为:6兀-3^4-
15.(3分)如图,在矩形48。中,已知/3=10,动点尸从点。出发,以每秒2个单位
的速度沿线段DC向终点C运动,连接/尸,把△/£>尸沿着工尸翻折得到作射线
当点£在矩形42。内部时,过尸作班LLA3于〃,如图,
第13页(共24页)
DG
B
H0
:.PH=QG=AD=6,
•・•ZAPQ=/APD=NR4Q,
•-AQ=PQ,
PQ2=PG8+2G2=PG2+52=36+PG2,
:.AQ6=36+PG2,
•;AQ=DG=DP+PG,
:.(DP+PG)2=36+PG7,
°:PD=2t,
:.(2什?G)4=36+PG2,
解得:PG=gY,
t
•・・4Q=PD+PG=2f+9"弋=F+9,
tt
U:QE=PQ-PE=PQ-DP=PQ-8K
♦:QE=QB,PQ=AQ,
:.QB=AQ-It,
,:AQ+BQ=AB=10,
:.AQ+AQ-2t=10f
.\AQ=7+tf
:.5+t=^~7..,
t
解得片色
5
当点E在矩形/BCD的外部时,如图:
第14页(共24页)
o
E
ZAPQ=ZAPD=ZPAQ,
:-AQ=PQ,
9:QE=PE-PQ=DP-PQ=6t-PQ,QE=QB,
:.BQ=2t-AQ,BPAB-AQ=2t-AQ,
.\AB=5t,
.•“=竺_=5(此时尸与C重合),
2
综上,存在这样的河直,t的值为3.
5
故答案为:9或5.
7
三.解答题
16.(1)计算:^+(-72022)°+(-1)-1;
(2)化简:
【解答】解:(1)^8+(-^2022)3+(-1)-1
=-3+1+(-1)
=-3;
aa~3+4
(a+3)(a~3)a-3
_____a_____•a-3
(a+3)(a-7)a
1
a+8
第15页(共24页)
3x-5<2x
17.(1)解不等式组,i,并将其解集在数轴上表示出来.
号x>2x+l
(2)解方程总」
x+322x+6
【解答】解:(1)解第一个不等式得:5;
将第二个不等式去分母得:x-l27x+2,
移项,合并同类项得:-3xN5,
解得:xW-I,
...原不等式组的解集为尤W-1,
解集表示在数轴上,如下图所示:
,,,】________________>
-5-4-3-2-1012345:
(2)原方程两边同乘8(x+3)得:4+5(x+3)=7,
整理得:6x+13=7,
解得:x=-2,
检验:将x=-3代入2(x+3)得8义(-2+3)=8W0,
故原方程的解为x=-2.
18.如图,反比例函数y=K(x>0)的图象经过点/(2,4),NC平分交x轴于
x
点C.
(1)求反比例函数的表达式.
(2)尺规作图:作出线段NC的垂直平分线.分别与。/、AB交于前D、E.(要求:不
写作法,保留作图痕迹)
(3)在(2)的条件下,连接CD求证:CD//AB.
【解答】(1)解:•反比例函数y=K(x>0)的图象经过点/(2,
第16页(共24页)
・•・左=8X4=8,
...反比例函数的解析式为尸丛
(2)解:如图,直线即为所求.
(3)证明:=/C平分
:.ZOAC=ZBAC,
:直线机垂直平分线段/C,
:.DA=DC,
;.NOAC=NDCA,
:.ZDCA=ZBAC,
C.CD//AB.
19.第31届世界大学生运动会于2023年7月28日在成都举行,主火炬塔位于东安湖体育
公园,亮灯之夜,10余道象征太阳光芒的螺旋线全部点亮,璀璨绚丽(如图1).小杰同
学想要通过测量及计算了解火炬塔cr)的大致高度,当他步行至点/处,再步行20米至
点2处,测得此时塔顶C的仰角为65°(如图2所示,点在同一条直线上)(sin65°
处0.91,cos65°七0.42,tan65°-2.14,sin42°七0.67,cos42°"0.74,tan42°"0.90,
结果保留整数)
第17页(共24页)
c
ABD
图1图2
【解答】解:设CD=x米,
在RtZX/CD中,tan42°=型,
AD
:.AD=W-
tan42°0.9
在RtABCD中,tan65°=型,
DB
:.BD=----?——=X.,
tan6502.14
•・•43=20米,
.TT
...——--二20,
0.95.14
解得x^31.
答:火炬塔CD的高约为31米.
20.开学期间,“艾上雪”品牌书包以其样式新颖,寓意美好,发现第一周男生包的销量是
100个,女生包销量是120个;第二周男生包的销量是180个,女生包的销量是200个
(1)每个男生包和女生包的利润分别是多少元?
(2)在两种书包的进价不变的情况下,第三周店主调整了价格,男生包每个涨价加元,
统计后发现,第三周两种类型书包的销量一样,女生包的利润达2600元.求出机的值.
【解答】解:(1)设每个男生包利润为x元,每个女生包的利润是y元,
(100x+120y=2800
则mil:<,
[180x+200y=4800
解得:卜=1。,
ly=15
答:每个男生包利润为10元,每个女生包的利润是15元;
⑵由题意得:2400=2600,
10+m15-m
两边同乘以(10+加)(15-m)得:
第18页(共24页)
2400(15-m)=2600(10+m),
解得:m=2,
当机=2时,(10+/)(15-7”)W5,
•••加=2是原分式方程的解,
:.m的值为2.
21.中国5/级旅游景区开封市清明上河园中水车园的水车由立式水轮、竹筒、支撑架、水
槽等部件组成,如图是水车园中半径为5%的水车灌田的简化示意图,立式水轮。。在水
流的作用下利用竹筒将水运送到点/处,。。与水面交于点3,C,且点8,C,且乙小C
=NPBA,若点P到点C的距离为32加,AB.
(1)求证:AP是。。的切线;
(2)请求出水槽/P的长度.
【解答】(1)证明:连接/O,并延长/O交。。于。,则//CO=90°,
:.ZCAD+ZCDA=90°,
NABC=ZADC,NP4C=ZPBA,
:.ZPAC=ZADC,
:.ZCAD+ZPAC^90Q,
,:OA是半径,
尸与0O相切,
(2)解:如图,OFLBP于点、E,
•:OF=5米,
:.OE=OF-EF=5-5=3(米),
连接OC,
-'-EC=Voc2-OE2=VB2-72=4(米),
第19页(共24页)
,2C=8OC=8米,
VPC=32米,
PB=CP+CB=32+8=40(米),
VZPAC=APBA,ZCPA=ZAPB,
:.△CAPs^ABP,
•*AP'CP,
PBAP
.•./尸3=尸小0尸=40*32=1280,
,/尸=16、而(米).
22.如图,在某中学的一场篮球赛中,李明在距离篮圈中心5.5加(水平距离),球出手时离
地面22”,当篮球运行的水平距离为3加时达到离地面的最大高度4〃?.已知篮球在空中
的运行路线为一条抛物线
(1)建立如图所示的平面直角坐标系,求篮球运动路线所在抛物线的函数解析式;
(2)场边看球的小丽认为,李明投出的此球不能命中篮圈中心.请通过计算说明小丽判
断的正确性;
(3)在球出手后,未达到最高点时,被防守队员拦截下来称为盖帽.但球到达最高点后,
防守队员再出手拦截,属于犯规.在(1),防守方球员张亮前来盖帽,已知张亮的最大
摸球高度为32m
第20页(共24页)
【解答】解:(1)•抛物线顶点坐标为(3,4),
设抛物线的解析式为y=a(x-3)2+4.
把(6,2.2)代入,得2=工.
5
••y=3(x-3产+6;
6
(2)把x=5.5代入抛物线解析式y=-^x(x-3)+41
得yJL
y4
..11一
•芍卢3・05,
O
...此球不能投中,小丽的判断是正确的.
⑶当尸3.6时,3.2=4(X-3)4+4,
0
解之,得%=1或x=3.
V5>3,
••x~6.
答:张亮应在李明前面1米范围内处跳起拦截才能盖帽成功.
23.小贺同学在数学探究课上,用几何画板进行了如下操作:首先画一个正方形/BCD,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 矿业法律法规与放射性金属矿管理考核试卷
- 电感器在电力补偿中的应用考核试卷
- 特色饮料作物种植与地域文化考核试卷
- 灯具的防尘设计及其维护考核试卷
- 煤制合成气生产考核试卷
- 林产品加工质量检验与评定考核试卷
- 百货零售企业供应链金融考核试卷
- 石棉云母矿选矿厂绿色生产与节能减排考核试卷
- 木材加工企业的环境保护与污染治理考核试卷
- 国家电网技能培训体系与实践
- 2023年IDSA念珠菌病指南中文翻译
- 中医护理耳穴压豆课件
- 钢木质隔热防火门成品检验报告
- YS/T 713-2009干式变压器用铝带、箔材
- YB 4068-1991热轧环件
- 阿尔茨海默病康复课件
- 企业重组相关税收政策培训课件
- 雨果与《巴黎圣母院》课件
- 毕业论文-基于单片机的分贝计设计与实现
- 青岛版一年级下册数学期中知识点分类整理复习完美版
- 防洪度汛监理实施细则-
评论
0/150
提交评论