




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022学年山东省滨州市部分校中考考前最后一卷数学试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.某班
30名学生的身高情况如下表:身高人数134787则这
30
名学生身高的众数和中位数分别是A., B.,C., D.,2.下列图形中,既是中心对称图形,又是轴对称图形的是()A. B. C. D.3.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是()A.主视图 B.俯视图 C.左视图 D.一样大4.郑州某中学在备考2018河南中考体育的过程中抽取该校九年级20名男生进行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示:成绩(单位:米)2.102.202.252.302.352.402.452.50人数23245211则下列叙述正确的是()A.这些运动员成绩的众数是5B.这些运动员成绩的中位数是2.30C.这些运动员的平均成绩是2.25D.这些运动员成绩的方差是0.07255.若正多边形的一个内角是150°,则该正多边形的边数是()A.6B.12C.16D.186.一次函数的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.下列关于x的方程中一定没有实数根的是()A. B. C. D.8.在以下三个图形中,根据尺规作图的痕迹,能判断射线AD平分∠BAC的是()A.图2 B.图1与图2 C.图1与图3 D.图2与图39.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“我”字的一面相对面上的字是()A.国 B.厉 C.害 D.了10.一元二次方程3x2-6x+4=0根的情况是A.有两个不相等的实数根 B.有两个相等的实数根 C.有两个实数根 D.没有实数根二、填空题(共7小题,每小题3分,满分21分)11.如图,直线a∥b,正方形ABCD的顶点A、B分别在直线a、b上.若∠2=73°,则∠1=.12.一组数据:1,2,a,4,5的平均数为3,则a=_____.13.如图,点A、B、C是圆O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠BAF=__.14.不等式组的解集是__.15.如图,在矩形ABCD中,AB=,AD=1,把该矩形绕点A顺时针旋转α度得矩形AB′C′D′,点C′落在AB的延长线上,则图中阴影部分的面积是_____.16.如图,在Rt△ABC中,∠B=90°,∠A=45°,BC=4,以BC为直径的⊙O与AC相交于点O,则阴影部分的面积为_____.17.对于实数a,b,定义运算“*”:a*b=,例如:因为4>2,所以4*2=42﹣4×2=8,则(﹣3)*(﹣2)=___________.三、解答题(共7小题,满分69分)18.(10分)小华想复习分式方程,由于印刷问题,有一个数“?”看不清楚:.她把这个数“?”猜成5,请你帮小华解这个分式方程;小华的妈妈说:“我看到标准答案是:方程的增根是,原分式方程无解”,请你求出原分式方程中“?”代表的数是多少?19.(5分)(1)计算:|-1|+(2017-π)0-()-1-3tan30°+;(2)化简:(+)÷,并在2,3,4,5这四个数中取一个合适的数作为a的值代入求值.20.(8分)为了奖励优秀班集体,学校购买了若干副乒乓球拍和羽毛球拍,购买2副乒乓球拍和1副羽毛球拍共需116元,购买3幅乒乓球拍和2幅羽毛球拍共需204元.每副乒乓球拍和羽毛球拍的单价各是多少元?若学校购买5副乒乓球拍和3副羽毛球拍,一共应支出多少元?21.(10分)为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C三类分别装袋,投放,其中A类指废电池,过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.(1)直接写出甲投放的垃圾恰好是A类的概率;(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.22.(10分)某市为了解本地七年级学生寒假期间参加社会实践活动情况,随机抽查了部分七年级学生寒假参加社会实践活动的天数(“A﹣﹣﹣不超过5天”、“B﹣﹣﹣6天”、“C﹣﹣﹣7天”、“D﹣﹣﹣8天”、“E﹣﹣﹣9天及以上”),并将得到的数据绘制成如下两幅不完整的统计图.请根据以上的信息,回答下列问题:(1)补全扇形统计图和条形统计图;(2)所抽查学生参加社会实践活动天数的众数是(选填:A、B、C、D、E);(3)若该市七年级约有2000名学生,请你估计参加社会实践“活动天数不少于7天”的学生大约有多少人?23.(12分)小敏参加答题游戏,答对最后两道单选题就顺利通关.第一道单选题有3个选项,,,第二道单选题有4个选项,,,,这两道题小敏都不会,不过小敏还有一个“求助”机会,使用“求助”可以去掉其中一道题的一个错误选项.假设第一道题的正确选项是,第二道题的正确选项是,解答下列问题:(1)如果小敏第一道题不使用“求助”,那么她答对第一道题的概率是________;(2)如果小敏将“求助”留在第二道题使用,用画树状图或列表的方法,求小敏顺利通关的概率;(3)小敏选第________道题(选“一”或“二”)使用“求助”,顺利通关的可能性更大.24.(14分)问题探究(1)如图①,在矩形ABCD中,AB=3,BC=4,如果BC边上存在点P,使△APD为等腰三角形,那么请画出满足条件的一个等腰三角形△APD,并求出此时BP的长;(2)如图②,在△ABC中,∠ABC=60°,BC=12,AD是BC边上的高,E、F分别为边AB、AC的中点,当AD=6时,BC边上存在一点Q,使∠EQF=90°,求此时BQ的长;问题解决(3)有一山庄,它的平面图为如图③的五边形ABCDE,山庄保卫人员想在线段CD上选一点M安装监控装置,用来监视边AB,现只要使∠AMB大约为60°,就可以让监控装置的效果达到最佳,已知∠A=∠E=∠D=90°,AB=270m,AE=400m,ED=285m,CD=340m,问在线段CD上是否存在点M,使∠AMB=60°?若存在,请求出符合条件的DM的长,若不存在,请说明理由.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】
找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据.【详解】解:这组数据中,出现的次数最多,故众数为,
共有30人,
第15和16人身高的平均数为中位数,
即中位数为:,
故选:A.【点睛】本题考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大或从大到小的顺序排列,如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.2、C【解析】
根据中心对称图形和轴对称图形对各选项分析判断即可得解.【详解】A、不是轴对称图形,是中心对称图形,故本选项错误;B、不是中心对称图形,是轴对称图形,故本选项错误;C、既是中心对称图形,又是轴对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选C.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3、C【解析】如图,该几何体主视图是由5个小正方形组成,左视图是由3个小正方形组成,俯视图是由5个小正方形组成,故三种视图面积最小的是左视图,故选C.4、B【解析】
根据方差、平均数、中位数和众数的计算公式和定义分别对每一项进行分析,即可得出答案.【详解】由表格中数据可得:A、这些运动员成绩的众数是2.35,错误;B、这些运动员成绩的中位数是2.30,正确;C、这些运动员的平均成绩是2.30,错误;D、这些运动员成绩的方差不是0.0725,错误;故选B.【点睛】考查了方差、平均数、中位数和众数,熟练掌握定义和计算公式是本题的关键,平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.5、B【解析】设多边形的边数为n,则有(n-2)×180°=n×150°,解得:n=12,故选B.6、B【解析】
由二次函数,可得函数图像经过一、三、四象限,所以不经过第二象限【详解】解:∵,∴函数图象一定经过一、三象限;又∵,函数与y轴交于y轴负半轴,
∴函数经过一、三、四象限,不经过第二象限故选B【点睛】此题考查一次函数的性质,要熟记一次函数的k、b对函数图象位置的影响7、B【解析】
根据根的判别式的概念,求出△的正负即可解题.【详解】解:A.x2-x-1=0,△=1+4=50,∴原方程有两个不相等的实数根,B.,△=36-144=-1080,∴原方程没有实数根,C.,,△=10,∴原方程有两个不相等的实数根,D.,△=m2+80,∴原方程有两个不相等的实数根,故选B.【点睛】本题考查了根的判别式,属于简单题,熟悉根的判别式的概念是解题关键.8、C【解析】【分析】根据角平分线的作图方法可判断图1,根据图2的作图痕迹可知D为BC中点,不是角平分线,图3中根据作图痕迹可通过判断三角形全等推导得出AD是角平分线.【详解】图1中,根据作图痕迹可知AD是角平分线;图2中,根据作图痕迹可知作的是BC的垂直平分线,则D为BC边的中点,因此AD不是角平分线;图3:由作图方法可知AM=AE,AN=AF,∠BAC为公共角,∴△AMN≌△AEF,∴∠3=∠4,∵AM=AE,AN=AF,∴MF=EN,又∵∠MDF=∠EDN,∴△FDM≌△NDE,∴DM=DE,又∵AD是公共边,∴△ADM≌△ADE,∴∠1=∠2,即AD平分∠BAC,故选C.【点睛】本题考查了尺规作图,三角形全等的判定与性质等,熟知角平分的尺规作图方法、全等三角形的判定与性质是解题的关键.9、A【解析】
正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】∴有“我”字一面的相对面上的字是国.故答案选A.【点睛】本题考查的知识点是专题:正方体相对两个面上的文字,解题的关键是熟练的掌握正方体相对两个面上的文字.10、D【解析】
根据∆=b2-4ac,求出∆的值,然后根据∆的值与一元二次方程根的关系判断即可.【详解】∵a=3,b=-6,c=4,∴∆=b2-4ac=(-6)2-4×3×4=-12<0,∴方程3x2-6x+4=0没有实数根.故选D.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac:当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.二、填空题(共7小题,每小题3分,满分21分)11、107°【解析】
过C作d∥a,得到a∥b∥d,构造内错角,根据两直线平行,内错角相等,及平角的定义,即可得到∠1的度数.【详解】过C作d∥a,∴a∥b,∴a∥b∥d,∵四边形ABCD是正方形,∴∠DCB=90°,∵∠2=73°,∴∠6=90°-∠2=17°,∵b∥d,∴∠3=∠6=17°,∴∠4=90°-∠3=73°,∴∠5=180°-∠4=107°,∵a∥d,∴∠1=∠5=107°,故答案为107°.【点睛】本题考查了平行线的性质以及正方形性质的运用,解题时注意:两直线平行,内错角相等.解决问题的关键是作辅助线构造内错角.12、1【解析】依题意有:(1+2+a+4+5)÷5=1,解得a=1.故答案为1.13、15°【解析】
根据平行四边形的性质和圆的半径相等得到△AOB为等边三角形,根据等腰三角形的三线合一得到∠BOF=∠AOF=30°,根据圆周角定理计算即可.【详解】解答:连接OB,∵四边形ABCO是平行四边形,∴OC=AB,又OA=OB=OC,∴OA=OB=AB,∴△AOB为等边三角形.∵OF⊥OC,OC∥AB,∴OF⊥AB,∴∠BOF=∠AOF=30°.由圆周角定理得,故答案为15°.14、2≤x<1【解析】
分别解两个不等式得到x<1和x≥2,然后根据大小小大中间找确定不等数组的解集.【详解】解:,解①得x<1,解②得x≥2,所以不等式组的解集为2≤x<1.故答案为2≤x<1.【点睛】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.15、【解析】
∵在矩形ABCD中,AB=,∠DAC=60°,∴DC=,AD=1.由旋转的性质可知:D′C′=,AD′=1,∴tan∠D′AC′==,∴∠D′AC′=60°.∴∠BAB′=30°,∴S△AB′C′=×1×=,S扇形BAB′==.S阴影=S△AB′C′-S扇形BAB′=-.故答案为-.【点睛】错因分析
中档题.失分原因有2点:(1)不能准确地将阴影部分面积转化为易求特殊图形的面积;(2)不能根据矩形的边求出α的值.16、6﹣π【解析】
连接、,根据阴影部分的面积计算.【详解】连接、,,,,,为的直径,,,,,,阴影部分的面积.故答案为.【点睛】本题考查的是扇形面积计算,掌握直角三角形的性质、扇形面积公式是解题的关键.17、-1.【解析】解:∵-3<-2,∴(-3)*(-2)=(-3)-(-2)=-1.故答案为-1.三、解答题(共7小题,满分69分)18、(1);(2)原分式方程中“?”代表的数是-1.【解析】
(1)“?”当成5,解分式方程即可,(2)方程有增根是去分母时产生的,故先去分母,再将x=2代入即可解答.【详解】(1)方程两边同时乘以得解得经检验,是原分式方程的解.(2)设?为,方程两边同时乘以得由于是原分式方程的增根,所以把代入上面的等式得所以,原分式方程中“?”代表的数是-1.【点睛】本题考查了分式方程解法和增根的定义及应用.增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.增根确定后可按如下步骤进行:
①化分式方程为整式方程;
②把增根代入整式方程即可求得相关字母的值.19、(1)-2(2)a+3,7【解析】
(1)先根据绝对值、零次方、负整数指数幂、立方根的意义和特殊角的三角函数值把每项化简,再按照实数的运算法则计算即可;(2)先根据分式的运算法则把(+)÷化简,再从2,3,4,5中选一个使原分式有意义的值代入计算即可.【详解】(1)原式=-1+1-4-3×+2=-2;(2)原式=[-]÷=(-)÷=×=a+3,∵a≠-3,2,3,∴a=4或a=5,取a=4,则原式=7.【点睛】本题考查了实数的混合运算,分式的化简求值,熟练掌握特殊角的三角函数值、负整数指数幂、分式的运算法则是解答本题的关键.20、(1)一副乒乓球拍28元,一副羽毛球拍60元(2)共320元.【解析】整体分析:(1)设购买一副乒乓球拍x元,一副羽毛球拍y元,根据“购买2副乒乓球拍和1副羽毛球拍共需116元,购买3幅乒乓球拍和2幅羽毛球拍共需204元”列方程组求解;(2)由(1)中求出的乒乓球拍和羽毛球拍的单价求解.解:(1)设购买一副乒乓球拍x元,一副羽毛球拍y元,由题意得,,解得:答:购买一副乒乓球拍28元,一副羽毛球拍60元.(2)5×28+3×60=320元答:购买5副乒乓球拍和3副羽毛球拍共320元.21、(1)(2).【解析】
(1)根据总共三种,A只有一种可直接求概率;(2)列出其树状图,然后求出能出现的所有可能,及符合条件的可能,根据概率公式求解即可.【详解】解:(1)甲投放的垃圾恰好是A类的概率是.(2)列出树状图如图所示:由图可知,共有18种等可能结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种.所以,(乙投放的垃圾恰有一袋与甲投放的垃圾是同类).即,乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率是.22、(1)见解析;(2)A;(3)800人.【解析】
(1)用A组人数除以它所占的百分比求出样本容量,利用360°乘以对应的百分比即可求得扇形圆心角的度数,再求得时间是8天的人数,从而补全扇形统计图和条形统计图;(2)根据众数的定义即可求解;(3)利用总人数2000乘以对应的百分比即可求解.【详解】解:(1)∵被调查的学生人数为24÷40%=60人,∴D类别人数为60﹣(24+12+15+3)=6人,则D类别的百分比为×100%=10%,补全图形如下:(2)所抽查学生参加社会实践活动天数的众数是A,故答案为:A;(3)估计参加社会实践“活动天数不少于7天”的学生大约有2000×(25%+10%+5%)=800人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23、(1);(2);(3)一.【解析】
(1)直接利用概率公式求解;
(2)画树状图(用Z表示正确选项,C表示错误选项)展示所有9种等可能的结果数,找出小敏顺利通关的结果数,然后根据概率公式计算出小敏顺利通关的概率;
(3)与(2)方法一样求出小颖将“求助”留在第一道题使用,小敏顺利通关的概率,然后比较两个概率的大小可判断小敏在答第几道题时使用“求助”.【详解】解:(1)若小敏第一道题不使用“求助”,那么小敏答对第一道题的概率=;
故答案为;
(2)若小敏将“求助”留在第二道题使用,那么小敏顺利通关的概率是.理由如下:
画树状图为:(用Z表示正确选项,C表示错误选项)
共有9种等可能的结果数,其中小颖顺利通关的结果数为1,
所以小敏顺利通关的概率=;
(3)若小敏将“求助”留在第一道题使用,画树状图为:(用Z表示正确选项,C表示错误选项)
共有8种等可能的结果数,其中小敏顺利通关的结果数为1,所以小敏将“求助”留在第一道题使用,小敏顺利通关的概率=,
由于>,
所以建议小敏在答第一道题时使用“求助”.【点睛】本题考查了用画树状图的方法求概率,掌握其画法是解题的关键.24、(1)1;2-;;(1)4+;(4)(200-25-40)米.【解析】
(1)由于△PAD是等腰三角形,底边不定,需三种情况讨论,运用三角形全等、矩形的性质、勾股定理等知识即可解决问题.(1)以EF为直径作⊙O,易证⊙O与BC相切,从而得到符合条件的点Q唯一,然后通过添加辅助线,借助于正方形、特殊角的三角函数值等知识即可求出BQ长.(4)要满足∠AMB=40°,可构造以AB为边的等边三角形的外接圆,该圆与线段CD的交点就是满足条件的点,然后借助于等边三角形的性质、特殊角的三角函数值等知识,就可算出符合条件的DM长.【详解】(1)①作AD的垂直平分线交BC于点P,如图①,则PA=PD.∴△PAD是等腰三角形.∵四边形ABCD是矩形,∴AB=DC,∠B=∠C=90°.∵PA=PD,AB=DC,∴Rt△ABP≌Rt△DCP(HL).∴BP=CP.∵BC=2,∴BP=CP=1.②以点D为圆心,AD为半径画弧,交BC于点P′,如图①,则DA=DP′.∴△P′AD是等腰三角形.∵四边形ABCD是矩形,∴AD=BC,AB=DC,∠C=90°.∵AB=4,BC=2,∴DC=4,DP′=2.∴CP′==.∴BP′=2-.③点A为圆心,AD为半径画弧,交BC于点P″,如图①,则AD=AP″.∴△P″AD是等腰三角形.同理可得:BP″=.综上所述:在等腰三角形△ADP中,若PA=PD,则BP=1;若DP=DA,则BP=2-;若AP=AD,则BP=.(1)∵E、F分别为边AB、AC的中点,∴EF∥BC,EF=BC.∵BC=11,∴EF=4.以EF为直径作⊙O,过点O作OQ⊥BC,垂足为Q,连接EQ、FQ
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025物流仓储合作协议书
- 数字媒体设计Photoshop技能测试题
- 市场调研分析与数据共享合作协议
- 轨道交通智能化调度与控制系统方案
- 2025终止基础设施建设合同协议书
- 2025标准合同范本:特许经营加盟协议书
- 2025年城市土地开发与住宅销售贷款合同(范本)模板
- 2025年关于广告承包的合同解析
- 2025居间代购合同模板
- 2025合同范本手机应用广告合同样本
- 西方经济学章节练习题题库及答案1-16章(全)
- 全国交通运输行业“捷安杯”城市轨道交通服务员(职业组)职业技能竞赛题库及答案
- 设备日常点检培训30
- 电动车充电突发事件应急预案演练记录
- 办公室主任培训[1]ppt课件
- 特应性皮炎治疗中创新药的竞争格局分析
- 射阳汉鼎新能源科技有限公司分布式光伏并网发电项目电站运维合同
- 护理查房胎盘早剥
- 分部开工申请表
- 肺炎住院病历及病程记录教学文案
- 部编版四年级语文下册第八单元集体备课教材分析
评论
0/150
提交评论