山东省青岛市李沧、平度、西海岸、胶州2022年中考数学全真模拟试题含解析_第1页
山东省青岛市李沧、平度、西海岸、胶州2022年中考数学全真模拟试题含解析_第2页
山东省青岛市李沧、平度、西海岸、胶州2022年中考数学全真模拟试题含解析_第3页
山东省青岛市李沧、平度、西海岸、胶州2022年中考数学全真模拟试题含解析_第4页
山东省青岛市李沧、平度、西海岸、胶州2022年中考数学全真模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省青岛市李沧、平度、西海岸、胶州2022年中考数学全真模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.若分式有意义,则a的取值范围为()A.a≠4 B.a>4 C.a<4 D.a=42.如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD=3,那么EF的长是()A. B. C. D.3.在Rt△ABC中∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,c=3a,tanA的值为()A. B. C. D.34.如图,等腰直角三角形位于第一象限,,直角顶点在直线上,其中点的横坐标为,且两条直角边,分别平行于轴、轴,若反比例函数的图象与有交点,则的取值范围是().A. B. C. D.5.下列函数是二次函数的是()A. B. C. D.6.已知地球上海洋面积约为361000000km2,361000000这个数用科学记数法可表示为()A.3.61×106 B.3.61×107 C.3.61×108 D.3.61×1097.如图数轴的A、B、C三点所表示的数分别为a、b、c.若|a﹣b|=3,|b﹣c|=5,且原点O与A、B的距离分别为4、1,则关于O的位置,下列叙述何者正确?()A.在A的左边 B.介于A、B之间C.介于B、C之间 D.在C的右边8.据史料记载,雎水太平桥建于清嘉庆年间,已有200余年历史.桥身为一巨型单孔圆弧,既没有用钢筋,也没有用水泥,全部由石块砌成,犹如一道彩虹横卧河面上,桥拱半径OC为13m,河面宽AB为24m,则桥高CD为()A.15m B.17m C.18m D.20m9.将抛物线y=x2先向左平移2个单位,再向下平移3个单位后所得抛物线的解析式为()A.y=(x﹣2)2+3B.y=(x﹣2)2﹣3C.y=(x+2)2+3D.y=(x+2)2﹣310.在实数|﹣3|,﹣2,0,π中,最小的数是()A.|﹣3| B.﹣2 C.0 D.π二、填空题(共7小题,每小题3分,满分21分)11.如果不等式组的解集是x<2,那么m的取值范围是_____12.若xay与3x2yb是同类项,则ab的值为_____.13.分解因式:x2-9=_▲.14.如图,直线a∥b,∠l=60°,∠2=40°,则∠3=_____.15.如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成.若较短的直角边BC=5,将四个直角三角形中较长的直角边分别向外延长一倍,得到图2所示的“数学风车”,若△BCD的周长是30,则这个风车的外围周长是_____.16.如图,身高是1.6m的某同学直立于旗杆影子的顶端处,测得同一时刻该同学和旗杆的影子长分别为1.2m和9m.则旗杆的高度为________m.17.一元二次方程x﹣1=x2﹣1的根是_____.三、解答题(共7小题,满分69分)18.(10分)进入冬季,某商家根据市民健康需要,代理销售一种防尘口罩,进货价为20元/包,经市场销售发现:销售单价为30元/包时,每周可售出200包,每涨价1元,就少售出5包.若供货厂家规定市场价不得低于30元/包.试确定周销售量y(包)与售价x(元/包)之间的函数关系式;试确定商场每周销售这种防尘口罩所获得的利润w(元)与售价x(元/包)之间的函数关系式,并直接写出售价x的范围;当售价x(元/包)定为多少元时,商场每周销售这种防尘口罩所获得的利润w(元)最大?最大利润是多少?19.(5分)已知Rt△ABC中,∠ACB=90°,CA=CB=4,另有一块等腰直角三角板的直角顶点放在C处,CP=CQ=2,将三角板CPQ绕点C旋转(保持点P在△ABC内部),连接AP、BP、BQ.如图1求证:AP=BQ;如图2当三角板CPQ绕点C旋转到点A、P、Q在同一直线时,求AP的长;设射线AP与射线BQ相交于点E,连接EC,写出旋转过程中EP、EQ、EC之间的数量关系.20.(8分)在如图的正方形网格中,每一个小正方形的边长为1;格点三角形ABC(顶点是网格线交点的三角形)的顶点A、C的坐标分别是(-4,6)、(-1,4);请在图中的网格平面内建立平面直角坐标系;请画出△ABC关于x轴对称的△A1B1C1;请在y轴上求作一点P,使△PB1C的周长最小,并直接写出点P的坐标.21.(10分)有大小两种货车,3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17吨.请问1辆大货车和1辆小货车一次可以分别运货多少吨?目前有33吨货物需要运输,货运公司拟安排大小货车共计10辆,全部货物一次运完,其中每辆大货车一次运费花费130元,每辆小货车一次运货花费100元,请问货运公司应如何安排车辆最节省费用?22.(10分)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?23.(12分)如图,AB为⊙O的直径,直线BM⊥AB于点B,点C在⊙O上,分别连接BC,AC,且AC的延长线交BM于点D,CF为⊙O的切线交BM于点F.(1)求证:CF=DF;(2)连接OF,若AB=10,BC=6,求线段OF的长.24.(14分)如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,与过点C的⊙O的切线交于点D.若AC=4,BC=2,求OE的长.试判断∠A与∠CDE的数量关系,并说明理由.

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】

分式有意义时,分母a-4≠0【详解】依题意得:a−4≠0,解得a≠4.故选:A【点睛】此题考查分式有意义的条件,难度不大2、C【解析】

易证△DEF∽△DAB,△BEF∽△BCD,根据相似三角形的性质可得=,=,从而可得+=+=1.然后把AB=1,CD=3代入即可求出EF的值.【详解】∵AB、CD、EF都与BD垂直,∴AB∥CD∥EF,∴△DEF∽△DAB,△BEF∽△BCD,∴=,=,∴+=+==1.∵AB=1,CD=3,∴+=1,∴EF=.故选C.【点睛】本题考查了相似三角形的判定及性质定理,熟练掌握性质定理是解题的关键.3、B【解析】

根据勾股定理和三角函数即可解答.【详解】解:已知在Rt△ABC中∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,c=3a,设a=x,则c=3x,b==2x.即tanA==.故选B.【点睛】本题考查勾股定理和三角函数,熟悉掌握是解题关键.4、D【解析】设直线y=x与BC交于E点,分别过A、E两点作x轴的垂线,垂足为D、F,则A(1,1),而AB=AC=2,则B(3,1),△ABC为等腰直角三角形,E为BC的中点,由中点坐标公式求E点坐标,当双曲线与△ABC有唯一交点时,这个交点分别为A、E,由此可求出k的取值范围.解:∵,..又∵过点,交于点,∴,∴,∴.故选D.5、C【解析】

根据一次函数的定义,二次函数的定义对各选项分析判断利用排除法求解.【详解】A.y=x是一次函数,故本选项错误;B.y=是反比例函数,故本选项错误;C.y=x-2+x2是二次函数,故本选项正确;D.y=右边不是整式,不是二次函数,故本选项错误.故答案选C.【点睛】本题考查的知识点是二次函数的定义,解题的关键是熟练的掌握二次函数的定义.6、C【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.解答:解:将361000000用科学记数法表示为3.61×1.故选C.7、C【解析】分析:由A、B、C三点表示的数之间的关系结合三点在数轴上的位置即可得出b=a+3,c=b+5,再根据原点O与A、B的距离分别为1、1,即可得出a=±1、b=±1,结合a、b、c间的关系即可求出a、b、c的值,由此即可得出结论.解析:∵|a﹣b|=3,|b﹣c|=5,∴b=a+3,c=b+5,∵原点O与A、B的距离分别为1、1,∴a=±1,b=±1,∵b=a+3,∴a=﹣1,b=﹣1,∵c=b+5,∴c=1.∴点O介于B、C点之间.故选C.点睛:本题考查了数值以及绝对值,解题的关键是确定a、b、c的值.本题属于基础题,难度不大,解决该题型题目时,根据数轴上点的位置关系分别找出各点代表的数是关键.8、C【解析】连结OA,如图所示:

∵CD⊥AB,

∴AD=BD=AB=12m.在Rt△OAD中,OA=13,OD=,所以CD=OC+OD=13+5=18m.故选C.9、D【解析】

先得到抛物线y=x2的顶点坐标(0,0),再根据点平移的规律得到点(0,0)平移后的对应点的坐标为(-2,-1),然后根据顶点式写出平移后的抛物线解析式.【详解】解:抛物线y=x2的顶点坐标为(0,0),把点(0,0)先向左平移2个单位,再向下平移1个单位得到对应点的坐标为(-2,-1),所以平移后的抛物线解析式为y=(x+2)2-1.故选:D.【点睛】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.10、B【解析】

直接利用利用绝对值的性质化简,进而比较大小得出答案.【详解】在实数|-3|,-1,0,π中,|-3|=3,则-1<0<|-3|<π,故最小的数是:-1.故选B.【点睛】此题主要考查了实数大小比较以及绝对值,正确掌握实数比较大小的方法是解题关键.二、填空题(共7小题,每小题3分,满分21分)11、m≥1.【解析】分析:先解第一个不等式,再根据不等式组的解集是x<1,从而得出关于m的不等式,解不等式即可.详解:解第一个不等式得,x<1,∵不等式组的解集是x<1,∴m≥1,故答案为m≥1.点睛:本题是已知不等式组的解集,求不等式中字母取值范围的问题.可以先将字母当作已知数处理,求出解集与已知解集比较,进而求得字母的范围.求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,大小小大中间找,大大小小解不了.12、2【解析】试题解析:∵xay与3x2yb是同类项,∴a=2,b=1,则ab=2.13、(x+3)(x-3)【解析】

x2-9=(x+3)(x-3),故答案为(x+3)(x-3).14、80°【解析】

根据平行线的性质求出∠4,根据三角形内角和定理计算即可.【详解】解:∵a∥b,∴∠4=∠l=60°,∴∠3=180°-∠4-∠2=80°,故答案为:80°.【点睛】本题考查的是平行线的性质、三角形内角和定理,掌握两直线平行,同位角相等是解题的关键.15、71【解析】分析:由题意∠ACB为直角,利用勾股定理求得外围中一条边,又由AC延伸一倍,从而求得风车的一个轮子,进一步求得四个.详解:依题意,设“数学风车”中的四个直角三角形的斜边长为x,AC=y,则x2=4y2+52,∵△BCD的周长是30,∴x+2y+5=30则x=13,y=1.∴这个风车的外围周长是:4(x+y)=4×19=71.故答案是:71.点睛:本题考查了勾股定理在实际情况中的应用,注意隐含的已知条件来解答此类题.16、1【解析】试题分析:利用相似三角形的相似比,列出方程,通过解方程求出旗杆的高度即可.解:∵同一时刻物高与影长成正比例.设旗杆的高是xm.∴1.6:1.2=x:9∴x=1.即旗杆的高是1米.故答案为1.考点:相似三角形的应用.17、x=0或x=1.【解析】

利用因式分解法求解可得.【详解】∵(x﹣1)﹣(x+1)(x﹣1)=0,∴(x﹣1)(1﹣x﹣1)=0,即﹣x(x﹣1)=0,则x=0或x=1,故答案为:x=0或x=1.【点睛】本题主要考查了解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.三、解答题(共7小题,满分69分)18、(1)y=﹣5x+350;(2)w=﹣5x2+450x﹣7000(30≤x≤40);(3)当售价定为45元时,商场每周销售这种防尘口罩所获得的利润w(元)最大,最大利润是1元.【解析】试题分析:(1)根据题意可以直接写出y与x之间的函数关系式;(2)根据题意可以直接写出w与x之间的函数关系式,由供货厂家规定市场价不得低于30元/包,且商场每周完成不少于150包的销售任务可以确定x的取值范围;(3)根据第(2)问中的函数解析式和x的取值范围,可以解答本题.试题解析:解:(1)由题意可得:y=200﹣(x﹣30)×5=﹣5x+350即周销售量y(包)与售价x(元/包)之间的函数关系式是:y=﹣5x+350;(2)由题意可得,w=(x﹣20)×(﹣5x+350)=﹣5x2+450x﹣7000(30≤x≤70),即商场每周销售这种防尘口罩所获得的利润w(元)与售价x(元/包)之间的函数关系式是:w=﹣5x2+450x﹣7000(30≤x≤40);(3)∵w=﹣5x2+450x﹣7000=﹣5(x﹣45)2+1∵二次项系数﹣5<0,∴x=45时,w取得最大值,最大值为1.答:当售价定为45元时,商场每周销售这种防尘口罩所获得的利润最大,最大利润是1元.点睛:本题考查了二次函数的应用,解题的关键是明确题意,可以写出相应的函数解析式,并确定自变量的取值范围以及可以求出函数的最值.19、(1)证明见解析(2)(3)EP+EQ=EC【解析】

(1)由题意可得:∠ACP=∠BCQ,即可证△ACP≌△BCQ,可得AP=CQ;作CH⊥PQ于H,由题意可求PQ=2,可得CH=,根据勾股定理可求AH=,即可求AP的长;作CM⊥BQ于M,CN⊥EP于N,设BC交AE于O,由题意可证△CNP≌△CMQ,可得CN=CM,QM=PN,即可证Rt△CEM≌Rt△CEN,EN=EM,∠CEM=∠CEN=45°,则可求得EP、EQ、EC之间的数量关系.【详解】解:(1)如图1中,∵∠ACB=∠PCQ=90°,∴∠ACP=∠BCQ且AC=BC,CP=CQ∴△ACP≌△BCQ(SAS)∴PA=BQ如图2中,作CH⊥PQ于H∵A、P、Q共线,PC=2,∴PQ=2,∵PC=CQ,CH⊥PQ∴CH=PH=在Rt△ACH中,AH==∴PA=AH﹣PH=-解:结论:EP+EQ=EC理由:如图3中,作CM⊥BQ于M,CN⊥EP于N,设BC交AE于O.∵△ACP≌△BCQ,∴∠CAO=∠OBE,∵∠AOC=∠BOE,∴∠OEB=∠ACO=90°,∵∠M=∠CNE=∠MEN=90°,∴∠MCN=∠PCQ=90°,∴∠PCN=∠QCM,∵PC=CQ,∠CNP=∠M=90°,∴△CNP≌△CMQ(AAS),∴CN=CM,QM=PN,∴CE=CE,∴Rt△CEM≌Rt△CEN(HL),∴EN=EM,∠CEM=∠CEN=45°∴EP+EQ=EN+PN+EM﹣MQ=2EN,EC=EN,∴EP+EQ=EC【点睛】本题考查几何变换综合题,解答关键是等腰直角三角形的性质,全等三角形的性质和判定,添加恰当辅助线构造全等三角形.20、(1)(2)见解析;(3)P(0,2).【解析】分析:(1)根据A,C两点的坐标即可建立平面直角坐标系.(2)分别作各点关于x轴的对称点,依次连接即可.(3)作点C关于y轴的对称点C′,连接B1C′交y轴于点P,即为所求.详解:(1)(2)如图所示:(3)作点C关于y轴的对称点C′,连接B1C′交y轴于点P,则点P即为所求.设直线B1C′的解析式为y=kx+b(k≠0),∵B1(﹣2,-2),C′(1,4),∴,解得:,∴直线AB2的解析式为:y=2x+2,∴当x=0时,y=2,∴P(0,2).点睛:本题主要考查轴对称图形的绘制和轴对称的应用.21、(1)1辆大货车一次可以运货4吨,1辆小货车一次可以运货吨;(2)货运公司应安排大货车8辆时,小货车2辆时最节省费用.【解析】

(1)设1辆大货车和1辆小货车一次可以分别运货吨和吨,根据“3辆大货车与4辆小货车一次可以运货18吨、2辆大货车与6辆小货车一次可以运货17吨”列方程组求解可得;(2)因运输33吨且用10辆车一次运完,故10辆车所运货不低于10吨,所以列不等式,大货车运费高于小货车,故用大货车少费用就小进行安排即可.【详解】(1)解:设1辆大货车一次可以运货x吨,1辆小货车一次可以运货y吨,依题可得:

,

解得:.

答:1辆大货车一次可以运货4吨,1辆小货车一次可以运货吨.

(2)解:设大货车有m辆,则小货车10-m辆,依题可得:

4m+(10-m)≥33

m≥0

10-m≥0

解得:≤m≤10,

∴m=8,9,10;

∴当大货车8辆时,则小货车2辆;

当大货车9辆时,则小货车1辆;

当大货车10辆时,则小货车0辆;

设运费为W=130m+100(10-m)=30m+1000,

∵k=30〉0,

∴W随x的增大而增大,

∴当m=8时,运费最少,

∴W=130×8+100×2=1240(元),

答:货运公司应安排大货车8辆时,小货车2辆时最节省费用.【点睛】考查了二元一次方程组和一元一次不等式的应用,体现了数学建模思想,考查了学生用方程解实际问题的能力,解题的关键是根据题意建立方程组,并利用不等式求解大货车的数量,解题时注意题意中一次运完的含义,此类试题常用的方法为建立方程,利用不等式或者一次函数性质确定方案.22、10,1.【解析】试题分析:可以设矩形猪舍垂直于住房墙一边长为m,可以得出平行于墙的一边的长为m,由题意得出方程求出边长的值.试题解析:设矩形猪舍垂直于住房墙一边长为m,可以得出平行于墙的一边的长为m,由题意得化简,得,解得:当时,(舍去),当时,,答:所围矩形猪舍的长为10m、宽为1m.考点:一元二次方程的应用题.23、(1)详见解析;(2)OF=.【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论