版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省邯郸市馆陶县魏僧寨中学2022年中考数学模拟预测题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是()A. B. C. D.2.等腰三角形两边长分别是2cm和5cm,则这个三角形周长是()A.9cmB.12cmC.9cm或12cmD.14cm3.如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,点E是△ABC的内心,过点E作EF∥AB交AC于点F,则EF的长为()A. B. C. D.4.将抛物线y=A.y=-12C.y=-125.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是()A.84 B.336 C.510 D.13266.如图,点D、E分别为△ABC的边AB、AC上的中点,则△ADE的面积与四边形BCED的面积的比为()A.1:2 B.1:3 C.1:4 D.1:17.已知圆锥的底面半径为2cm,母线长为5cm,则圆锥的侧面积是()A.20cm2 B.20πcm2 C.10πcm2 D.5πcm28.下列多边形中,内角和是一个三角形内角和的4倍的是()A.四边形B.五边形C.六边形D.八边形9.已知点A(1﹣2x,x﹣1)在第二象限,则x的取值范围在数轴上表示正确的是()A. B.C. D.10.下列计算正确的是()A.x2x3=x6 B.(m+3)2=m2+9C.a10÷a5=a5 D.(xy2)3=xy611.如图,C,B是线段AD上的两点,若,,则AC与CD的关系为()A. B. C. D.不能确定12.如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.已知AB=1,BC=3,DE=2,则EF的长为()A.4 B..5 C.6 D.8二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在△ABC中,AB=5cm,AC=3cm,BC的垂直平分线分别交AB、BC于D、E,则△ACD的周长为cm.14.小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于_____.15.如图,P(m,m)是反比例函数在第一象限内的图象上一点,以P为顶点作等边△PAB,使AB落在x轴上,则△POB的面积为_____.16.不透明袋子中装有个球,其中有个红球、个绿球和个黑球,这些球除颜色外无其他差别.从袋子中随机取出个球,则它是黑球的概率是_____.17.某种商品因换季准备打折出售,如果按定价的七五折出售将赔25元,而按定价的九折出售将赚20元,则商品的定价是______元18.若两个相似三角形的面积比为1∶4,则这两个相似三角形的周长比是__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)观察下列等式:22﹣2×1=12+1①32﹣2×2=22+1②42﹣2×3=32+1③…第④个等式为;根据上面等式的规律,猜想第n个等式(用含n的式子表示,n是正整数),并说明你猜想的等式正确性.20.(6分)如图,直角△ABC内接于⊙O,点D是直角△ABC斜边AB上的一点,过点D作AB的垂线交AC于E,过点C作∠ECP=∠AED,CP交DE的延长线于点P,连结PO交⊙O于点F.(1)求证:PC是⊙O的切线;(2)若PC=3,PF=1,求AB的长.21.(6分)某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(x≥2)个羽毛球,供社区居民免费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:A超市:所有商品均打九折(按标价的90%)销售;B超市:买一副羽毛球拍送2个羽毛球.设在A超市购买羽毛球拍和羽毛球的费用为yA(元),在B超市购买羽毛球拍和羽毛球的费用为yB(元).请解答下列问题:分别写出yA、yB与x之间的关系式;若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.22.(8分)已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠1.(1)若CE=1,求BC的长;(1)求证:AM=DF+ME.23.(8分)如图,一次函数的图象与反比例函数(为常数,且)的图象交于A(1,a)、B两点.求反比例函数的表达式及点B的坐标;在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标及△PAB的面积.24.(10分)如图,矩形中,对角线、交于点,以、为邻边作平行四边形,连接求证:四边形是菱形若,,求四边形的面积25.(10分)某校在一次大课间活动中,采用了四钟活动形式:A、跑步,B、跳绳,C、做操,D、游戏.全校学生都选择了一种形式参与活动,小杰对同学们选用的活动形式进行了随机抽样调查,根据调查统计结果,绘制了不完整的统计图.请结合统计图,回答下列问题:(1)这次调查中,一共调查了多少名学生?(2)求出扇形统计图中“B:跳绳”所对扇形的圆心角的度数,并补全条形图;(3)若该校有2000名学生,请估计选择“A:跑步”的学生约有多少人?26.(12分)某学校环保志愿者协会对该市城区的空气质量进行调查,从全年365天中随机抽取了80天的空气质量指数(AQI)数据,绘制出三幅不完整的统计图表,请根据图表中提供的信息解答下列问题:AQI指数质量等级天数(天)0-50优m51-100良44101-150轻度污染n151-200中度污染4201-300重度污染2300以上严重污染2(1)统计表中m=,n=,扇形统计图中,空气质量等级为“良”的天数占%;(2)补全条形统计图,并通过计算估计该市城区全年空气质量等级为“优”和“良”的天数共多少?27.(12分)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,DE交AC于点E,且∠A=∠ADE.求证:DE是⊙O的切线;若AD=16,DE=10,求BC的长.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解析】试题解析:如图所示:设BC=x,∵在Rt△ABC中,∠B=90°,∠A=30°,∴AC=2BC=2x,AB=BC=x,根据题意得:AD=BC=x,AE=DE=AB=x,作EM⊥AD于M,则AM=AD=x,在Rt△AEM中,cos∠EAD=;故选B.【点睛】本题考查了解直角三角形、含30°角的直角三角形的性质、等腰三角形的性质、三角函数等,通过作辅助线求出AM是解决问题的关键.2、B【解析】当腰长是2cm时,因为2+2<5,不符合三角形的三边关系,排除;当腰长是5cm时,因为5+5>2,符合三角形三边关系,此时周长是12cm.故选B.3、A【解析】
过E作EG∥AB,交AC于G,易得CG=EG,EF=AF,依据△ABC∽△GEF,即可得到EG:EF:GF,根据斜边的长列方程即可得到结论.【详解】过E作EG∥BC,交AC于G,则∠BCE=∠CEG.∵CE平分∠BCA,∴∠BCE=∠ACE,∴∠ACE=∠CEG,∴CG=EG,同理可得:EF=AF.∵BC∥GE,AB∥EF,∴∠BCA=∠EGF,∠BAC=∠EFG,∴△ABC∽△GEF.∵∠ABC=90°,AB=6,BC=8,∴AC=10,∴EG:EF:GF=BC:BC:AC=4:3:5,设EG=4k=AG,则EF=3k=CF,FG=5k.∵AC=10,∴3k+5k+4k=10,∴k=,∴EF=3k=.故选A.【点睛】本题考查了相似三角形的判定与性质,等腰三角形的性质以及勾股定理的综合运用,解决问题的关键是作辅助线构相似三角形以及构造等腰三角形.4、D【解析】
将抛物线y=12【详解】由题意得,a=-12设旋转180°以后的顶点为(x′,y′),则x′=2×0-(-2)=2,y′=2×3-5=1,∴旋转180°以后的顶点为(2,1),∴旋转180°以后所得图象的解析式为:y=-1故选D.【点睛】本题考查了二次函数图象的旋转变换,在绕抛物线某点旋转180°以后,二次函数的开口大小没有变化,方向相反;设旋转前的的顶点为(x,y),旋转中心为(a,b),由中心对称的性质可知新顶点坐标为(2a-x,2b-y),从而可求出旋转后的函数解析式.5、C【解析】由题意满七进一,可得该图示为七进制数,化为十进制数为:1×73+3×72+2×7+6=510,故选:C.点睛:本题考查记数的方法,注意运用七进制转化为十进制,考查运算能力,属于基础题.6、B【解析】
根据中位线定理得到DE∥BC,DE=BC,从而判定△ADE∽△ABC,然后利用相似三角形的性质求解.【详解】解:∵D、E分别为△ABC的边AB、AC上的中点,∴DE是△ABC的中位线,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴△ADE的面积:△ABC的面积==1:4,∴△ADE的面积:四边形BCED的面积=1:3;故选B.【点睛】本题考查三角形中位线定理及相似三角形的判定与性质.7、C【解析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入,圆锥的侧面积=2π×2×5÷2=10π.故答案为C8、C【解析】
利用多边形的内角和公式列方程求解即可【详解】设这个多边形的边数为n.由题意得:(n﹣2)×180°=4×180°.解得:n=1.答:这个多边形的边数为1.故选C.【点睛】本题主要考查的是多边形的内角和公式,掌握多边形的内角和公式是解题的关键.9、B【解析】
先分别求出每一个不等式的解集,再根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:根据题意,得:,解不等式①,得:x>,解不等式②,得:x>1,∴不等式组的解集为x>1,故选:B.【点睛】本题主要考查解一元一次不等式组,关键要掌握解一元一次不等式的方法,牢记确定不等式组解集方法.10、C【解析】
根据乘方的运算法则、完全平方公式、同底数幂的除法和积的乘方进行计算即可得到答案.【详解】x2•x3=x5,故选项A不合题意;(m+3)2=m2+6m+9,故选项B不合题意;a10÷a5=a5,故选项C符合题意;(xy2)3=x3y6,故选项D不合题意.故选:C.【点睛】本题考查乘方的运算法则、完全平方公式、同底数幂的除法和积的乘方解题的关键是掌握乘方的运算法则、完全平方公式、同底数幂的除法和积的乘方的运算.11、B【解析】
由AB=CD,可得AC=BD,又BC=2AC,所以BC=2BD,所以CD=3AC.【详解】∵AB=CD,∴AC+BC=BC+BD,即AC=BD,又∵BC=2AC,∴BC=2BD,∴CD=3BD=3AC.故选B.【点睛】本题考查了线段长短的比较,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍转化线段之间的数量关系是十分关键的一点.12、C【解析】
解:∵AD∥BE∥CF,根据平行线分线段成比例定理可得,即,解得EF=6,故选C.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、8【解析】试题分析:根据线段垂直平分线的性质得,BD=CD,则AB=AD+CD,所以,△ACD的周长=AD+CD+AC=AB+AC,解答出即可解:∵DE是BC的垂直平分线,∴BD=CD,∴AB=AD+BD=AD+CD,∴△ACD的周长=AD+CD+AC=AB+AC=8cm;故答案为8考点:线段垂直平分线的性质点评:本题主要考查了线段垂直平分线的性质和三角形的周长,掌握线段的垂直平分线上的点到线段两端点的距离相等14、210°【解析】
根据三角形内角和定理得到∠B=45°,∠E=60°,根据三角形的外角的性质计算即可.【详解】解:如图:∵∠C=∠F=90°,∠A=45°,∠D=30°,∴∠B=45°,∠E=60°,∴∠2+∠3=120°,∴∠α+∠β=∠A+∠1+∠4+∠B=∠A+∠B+∠2+∠3=90°+120°=210°,故答案为:210°.【点睛】本题考查的是三角形的外角的性质、三角形内角和定理,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.15、.【解析】
如图,过点P作PH⊥OB于点H,∵点P(m,m)是反比例函数y=在第一象限内的图象上的一个点,∴9=m2,且m>0,解得,m=3.∴PH=OH=3.∵△PAB是等边三角形,∴∠PAH=60°.∴根据锐角三角函数,得AH=.∴OB=3+∴S△POB=OB•PH=.16、【解析】
一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小.【详解】∵不透明袋子中装有7个球,其中有2个红球、2个绿球和3个黑球,∴从袋子中随机取出1个球,则它是黑球的概率是:故答案为:.【点睛】本题主要考查概率的求法与运用,解决本题的关键是要熟练掌握概率的定义和求概率的公式.17、300【解析】
设成本为x元,标价为y元,根据已知条件可列二元一次方程组即可解出定价.【详解】设成本为x元,标价为y元,依题意得,解得故定价为300元.【点睛】此题主要考查二元一次方程组的应用,解题的关键是根据题意列出方程再求解.18、【解析】试题分析:∵两个相似三角形的面积比为1:4,∴这两个相似三角形的相似比为1:1,∴这两个相似三角形的周长比是1:1,故答案为1:1.考点:相似三角形的性质.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)52﹣2×4=42+1;(2)(n+1)2﹣2n=n2+1,证明详见解析.【解析】
(1)根据①②③的规律即可得出第④个等式;(2)第n个等式为(n+1)2﹣2n=n2+1,把等式左边的完全平方公式展开后再合并同类项即可得出右边.【详解】(1)∵22﹣2×1=12+1①32﹣2×2=22+1②42﹣2×3=32+1③∴第④个等式为52﹣2×4=42+1,故答案为:52﹣2×4=42+1,(2)第n个等式为(n+1)2﹣2n=n2+1.(n+1)2﹣2n=n2+2n+1﹣2n=n2+1.【点睛】本题主要考查了整式的运算,熟练掌握完全平方公式是解答本题的关键.20、(1)证明见解析;(2)1.【解析】试题分析:(1)连接OC,欲证明PC是⊙O的切线,只要证明PC⊥OC即可;(2)延长PO交圆于G点,由切割线定理求出PG即可解决问题.试题解析:(1)如图,连接OC,∵PD⊥AB,∴∠ADE=90°,∵∠ECP=∠AED,又∵∠EAD=∠ACO,∴∠PCO=∠ECP+∠ACO=∠AED+∠EAD=90°,∴PC⊥OC,∴PC是⊙O切线;(2)延长PO交圆于G点,∵PF×PG=PC考点:切线的判定;切割线定理.21、解:(1)yA=27x+270,yB=30x+240;(2)当2≤x<10时,到B超市购买划算,当x=10时,两家超市一样划算,当x>10时在A超市购买划算;(3)先选择B超市购买10副羽毛球拍,然后在A超市购买130个羽毛球.【解析】
(1)根据购买费用=单价×数量建立关系就可以表示出yA、yB的解析式;(2)分三种情况进行讨论,当yA=yB时,当yA>yB时,当yA<yB时,分别求出购买划算的方案;(3)分两种情况进行讨论计算求出需要的费用,再进行比较就可以求出结论.【详解】解:(1)由题意,得yA=(10×30+3×10x)×0.9=27x+270;yB=10×30+3(10x﹣20)=30x+240;(2)当yA=yB时,27x+270=30x+240,得x=10;当yA>yB时,27x+270>30x+240,得x<10;当yA<yB时,27x+270<30x+240,得x>10∴当2≤x<10时,到B超市购买划算,当x=10时,两家超市一样划算,当x>10时在A超市购买划算.(3)由题意知x=15,15>10,∴选择A超市,yA=27×15+270=675(元),先选择B超市购买10副羽毛球拍,送20个羽毛球,然后在A超市购买剩下的羽毛球:(10×15﹣20)×3×0.9=351(元),共需要费用10×30+351=651(元).∵651元<675元,∴最佳方案是先选择B超市购买10副羽毛球拍,然后在A超市购买130个羽毛球.【点睛】本题考查一次函数的应用,根据题意确列出函数关系式是本题的解题关键.22、(1)1;(1)见解析.【解析】试题分析:(1)根据菱形的对边平行可得AB∥CD,再根据两直线平行,内错角相等可得∠1=∠ACD,所以∠ACD=∠1,根据等角对等边的性质可得CM=DM,再根据等腰三角形三线合一的性质可得CE=DE,然后求出CD的长度,即为菱形的边长BC的长度;
(1)先利用“边角边”证明△CEM和△CFM全等,根据全等三角形对应边相等可得ME=MF,延长AB交DF于点G,然后证明∠1=∠G,根据等角对等边的性质可得AM=GM,再利用“角角边”证明△CDF和△BGF全等,根据全等三角形对应边相等可得GF=DF,最后结合图形GM=GF+MF即可得证.试题解析:(1)∵四边形ABCD是菱形,
∴AB∥CD,
∴∠1=∠ACD,
∵∠1=∠1,
∴∠ACD=∠1,
∴MC=MD,
∵ME⊥CD,
∴CD=1CE,
∵CE=1,
∴CD=1,
∴BC=CD=1;
(1)AM=DF+ME证明:如图,∵F为边BC的中点,
∴BF=CF=BC,
∴CF=CE,
在菱形ABCD中,AC平分∠BCD,
∴∠ACB=∠ACD,
在△CEM和△CFM中,
∵,
∴△CEM≌△CFM(SAS),
∴ME=MF,
延长AB交DF的延长线于点G,
∵AB∥CD,
∴∠G=∠1,
∵∠1=∠1,
∴∠1=∠G,
∴AM=MG,
在△CDF和△BGF中,
∵∴△CDF≌△BGF(AAS),
∴GF=DF,
由图形可知,GM=GF+MF,
∴AM=DF+ME.23、(1),;(2)P,.【解析】试题分析:(1)由点A在一次函数图象上,结合一次函数解析式可求出点A的坐标,再由点A的坐标利用待定系数法即可求出反比例函数解析式,联立两函数解析式成方程组,解方程组即可求出点B坐标;(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,连接PB.由点B、D的对称性结合点B的坐标找出点D的坐标,设直线AD的解析式为y=mx+n,结合点A、D的坐标利用待定系数法求出直线AD的解析式,令直线AD的解析式中y=0求出点P的坐标,再通过分割图形结合三角形的面积公式即可得出结论.试题解析:(1)把点A(1,a)代入一次函数y=-x+4,得:a=-1+4,解得:a=3,∴点A的坐标为(1,3).把点A(1,3)代入反比例函数y=,得:3=k,∴反比例函数的表达式y=,联立两个函数关系式成方程组得:,解得:,或,∴点B的坐标为(3,1).(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,连接PB,如图所示.∵点B、D关于x轴对称,点B的坐标为(3,1),∴点D的坐标为(3,-1).设直线AD的解析式为y=mx+n,把A,D两点代入得:,解得:,∴直线AD的解析式为y=-2x+1.令y=-2x+1中y=0,则-2x+1=0,解得:x=,∴点P的坐标为(,0).S△PAB=S△ABD-S△PBD=BD•(xB-xA)-BD•(xB-xP)=×[1-(-1)]×(3-1)-×[1-(-1)]×(3-)=.考点:1.反比例函数与一次函数的交点问题;2.待定系数法求一次函数解析式;3.轴对称-最短路线问题.24、(1)见解析;(2)S四边形ADOE=.【解析】
(1)根据矩形的性质有OA=OB=OC=OD,根据四边形ADOE是平行四边形,得到OD∥AE,AE=OD.等量代换得到AE=OB.即可证明四边形AOBE为平行四边形.根据有一组邻边相等的平行四边形是菱形即可证明.(2)根据菱形的性质有∠EAB=∠BAO.根据矩形的性质有AB∥CD,根据平行线的性质有∠BAC=∠ACD,求出∠DCA=60°,求出AD=.根据面积公式SΔADC,即可求解.【详解】(1)证明:∵矩形ABCD,∴OA=OB=OC=OD.∵平行四边形ADOE,∴OD∥AE,AE=OD.∴AE=OB.∴四边形AOBE为平行四边形.∵OA=OB,∴四边形AOBE为菱形.(2)解:∵菱形AOBE,∴∠EAB=∠BAO.∵矩形ABCD,∴AB∥CD.∴∠BAC=∠ACD,∠ADC=90°.∴∠EAB=∠BAO=∠DCA.∵∠EAO+∠DCO=180°,∴∠DCA=60°.∵DC=2,∴AD=.∴SΔADC=.∴S四边形ADOE=.【点睛】考查平行四边形的判定与性质,矩形的性质,菱形的判定与性质,解直角三角形,综合性比较强.25、(1)一共调查了300名学生;(2)36°,补图见解析;(3)估计选择“A:跑步”的学生约有800人.【解析】
(1)由跑步的学生数除以占的百分比求出调查学生总数即可;(2)求出跳绳学生占的百分比,乘以360°求出占的圆心角度数,补全条形统计图即可;(3)利用跑步占的百分比,乘以2000即可得到结果.【详解】(1)根据题意得:120÷40%=300(名),则一共调查了300名学生;(2)根据题意得:跳绳学生数为30
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度瓦工装修绿色施工认证合同3篇
- 二零二五版危化品公路运输安全监管服务合同2篇
- 二零二五版搅拌站轮胎专用备品备件供应合同3篇
- 二零二五版智能办公楼深度清洁及保养服务合同2篇
- 二零二五版办公室文员工作环境优化合同3篇
- 二零二五年度高端房地产项目个人连带责任保证担保合同2篇
- 二零二五年度互联网数据中心(IDC)设施租赁合同3篇
- 2025年度中式烹饪技艺传承与创新合同协议3篇
- 屋顶防水施工合同(2篇)
- 二零二五年救生员水上安全培训与劳动合同3篇
- 广东省惠州市2024-2025学年高一上学期期末考试英语试题(含答案)
- 医院骨科2025年带教计划(2篇)
- 环境保护应急管理制度执行细则
- 2024-2030年中国通航飞行服务站(FSS)行业发展模式规划分析报告
- 机械制造企业风险分级管控手册
- 地系梁工程施工方案
- 藏文基础-教你轻轻松松学藏语(西藏大学)知到智慧树章节答案
- 2024电子商务平台用户隐私保护协议3篇
- 安徽省芜湖市2023-2024学年高一上学期期末考试 英语 含答案
- 医学教程 常见体表肿瘤与肿块课件
- 内分泌系统异常与虚劳病关系
评论
0/150
提交评论