




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1沪科版八下数学《一元二次方程》单元作业设计一、单元信息信息学科年级学期教材版本单元名称数学八年级第二学期一元二次方程单元组织☑自然单元口重组单元课时信息序号1一元二次方程第17.1(P19-22)2一元二次方程的解法第17.2(P23-33)3一元二次方程根的判别式第17.3(P34-36)4一元二次方程的根与系数的关系第17.4(P37-40)5一元二次方程的应用第17.5(P41-45)(一)课标要求(二)内容分析审、找、设.列.解.魏,答依据:若5-0。元二欲方程形式定义2《一元二次方程》是《课标(2022年版)》“数与式”中“方程与不等式”(三)学情分析对于解方程的基本思路(即使方程逐步化为x=a的形式)、转化思想等已经比模型解决实际问题时,尽管已经有了运用一次方程(组)解应用问题的经验,但36.经历在具体情境中估计一元二次方程解的过程,发展估算意识和能力。四、单元作业设计思路从数学学科核心素养出发,结合2022年版数学课程标准,整体把握教材,将本单元内容重组整合,分层设计作业,每课时均设计“基础性作业”(面向全体,体现课标,题量3-4大题,要求学生必做)和“发展性作业”(体现个性化,探究性、实践性,题量3-4大题,要求学生有选择的完成)。五、课时作业A基础性作业(1)下列方程是一元二次方程的是()(2)把下列方程化成一元二次方程的一般形式,并写出它的二次项系数、一次(3)若关于x的一元二次方程x²-ax+6=0的一个根是2,则a的值为()(4)某种植基地2021年蔬菜产量为80吨,预计2023年蔬菜产量达到100吨,求蔬菜产量的年平均增长率.设蔬菜产量的年平均增长率为x,则可列方程为A.80(1+2x)=100B.100(1-x)²=80C.80(1+x)²=100D.80(1+x²)=1002.时间要求(7分钟)3.使用方式:基础性性作业,要求学生必做,用于课后巩固知识.4.评价设计等级备注ABCA等,答案正确、过程正确。C等,答案不正确,有过程不完整;答案不准A等,过程规范,答案正确。B等,过程不够规范、完整,答案正确。A等,解法有新意和独到之处,答案正确。综合评价等级AAA、AAB综合评价为A等;ABB、BBB、AAC综45.作业分析与设计意图第(1)题判断一个方程是否是一元二次方程,设计意图是让学生知道判断是否是一元二次方程,不能只看形式,要先化简,再看是否符合一元二次的定义.第(2)题化一元二次方程为一般形式,设计意图是让学生掌握一元二次方程的各项和各项系数时注意不要丢掉各项的符号.第(3)题求方程中未知参数,设计意图是使学会用方程的解求解方程中的未知参数,培养学生逆向思维.第(4)题由实际问题抽象出一元二次方程,设计意图是会从从实际问题找出增长率问题中的等量关系,并能列出方程求解.B发展性作业(6)若关于x的一元二次方程(m+2)x²+5x+m²-4=0,有一个根为0,求m的(7)若关于x的一元二次方程2x²-(a+1)x=x(x-1)-1化成一般形式后,二次项系数为1,一次项系数为-1,则a的值为()2.时间要求(10分钟)3.使用方式:发展性作业,用于课后提升学习能力,学有余力的同学完成.4.评价设计等级备注ABCA等,答案正确、过程正确。C等,答案不正确,有过程不完整;答案不准A等,过程规范,答案正确。B等,过程不够规范、完整,答案正确。A等,解法有新意和独到之处,答案正确。综合评价等级AAA、AAB综合评价为A等;ABB、BBB、AAC综5.作业分析与设计意图第(5)题考查一元二次方程的定义,设计意图是让学生掌握一元二次方程的概念,能根据定义判断式子中未知参数的值.第(6)题考查一元二次方程的解,能使方程左右两边相等的未知数的值,5设计意图是让学生掌握一元二次方程的解.第(7)题考查一元二次方程的一般形式,设计意图是让学生掌握一元二次方程的标准形式,并且能够熟练转化.第(8)题考查一元二次方程的解.设计意图是掌握一元二次方程的解,以及多项式相等的条件.第二课时:17.2.1一元二次方程的解法(直接开平方法)A基础性作业1.作业内容(1)有下列方程:①x²-2x-0;②x²-25=0;③(2x-1)²=1;其中能用直接开平方法做的是()A.①②③B.②③C.②③④D.①②③④(2)用直接开平方解下列一元二次方程,其中无解的方程为()A.x²+9=0B.-2x²=0C.x²-3=0(3)一元二次方程x²-9=0的解是()A.-3B.3(4)用直接开平方法解一元二次方程.①(x-1)²=92.时间要求(10分钟以内)3.使用方式:基础性作业,要求学生必做,用于课后巩固知识.4.评价设计.等级备注ABCA等,答案正确、过程正确。C等,答案不正确,有过程不完整;答案不准A等,过程规范,答案正确。B等,过程不够规范、完整,答案正确。A等,解法有新意和独到之处,答案正确。综合评价等级AAA、AAB综合评价为A等;ABB、BBB、AAC综5.作业分析与设计意图.第(1)题根据直接开平方形式来判定是否能直接开平方,作业第(2)、(3)、(4)题利用直接开平方解一元二次方程.第(1)题设计意图是培养学生对直接开平方法形式的判断,第(2)、(3)、(4)题设计意图是让学生掌握直接开平解方程,以及降次的思想.6B发展性作业(7)若一元二次方程a²=b(ab>0)的两个根分别是m+1与m-3,则2.时间要求(10分钟以内)3.使用方式:发展性作业,提升学习能力,供学有余力的同学选做.4.评价设计.等级备注ABCA等,答案正确、过程正确。C等,答案不正确,有过程不完整;答案不准确A等,过程规范,答案正确。B等,过程不够规范、完整,答案正确。A等,解法有新意和独到之处,答案正确。综合评价等级AAA、AAB综合评价为A等;ABB、BBB、AAC综5.作业分析与设计意图.第(5)、(6)题结合整体思想,根据直接开平方解方程.作业第(7)题解形如ax²=b(ab>0)的方程,根据直接开平方解方程得到方程的根互为相反数.第(5)、(6)题设计意图是学会用直接开平方法解方程,整体思想的运用.作业第(7)设计意图是培养学生的逻辑思维能力,使学生体会化归的数学思想.第三课时:17.2.2一元二次方程的解法(配方法)A基础性作业(1)用配方法解下列方程,其中应在等式的两边同时加上1是()A.x²-2x=5B.x²-4x=5C.x²+4x=5D.x²+3x=5(2)用配方法解一元二次方程x²-4x-1=0时,原方程可变形为()A.(x+2)²=5B.(x-2)²=5C.(x+4)²=5(3)将一元二次方程x²+4x-5=0化成(x+a)²=b(a,b为常数)的形式,则a,b的值分别是()A.-2,-9B.-2,9C.2,97(4)用配方法解下列方程.2.时间要求(10分钟以内)3.使用方式:基础性作业,要求学生必做,用于课后巩固知识.4.评价设计.等级备注ABCA等,答案正确、过程正确。C等,答案不正确,有过程不完整;答案不准A等,过程规范,答案正确。B等,过程不够规范、完整,答案正确。A等,解法有新意和独到之处,答案正确。综合评价等级AAA、AAB综合评价为A等;ABB、BBB、AAC综5.作业分析与设计意图.第(1)题根据配方法确定方程两边的加数.作业第(2)题一般形式利用配方法往直接开平方形式的转换.第(3)题利用配方法将一般形式转换为直接开平方形式,并找到相对应的未知数的值.第(4)题根据配方法解方程,其中包括化一元二次方程二次项系数为1.第(1)题设计意图是让学生掌握配方法的一般步骤.第(2)题设计意图培养学生掌握配方法,运用变形的思维方式来解方程.第(3)题设计意图是培养学生对配方法的使用,以及类比推理的能力.第(4)题设计意图是培养学生对配方法的使用,使学生体会转化的数学思想.B发展性作业(5)已知关于x的方程x²+x-a=0的一个根为2,则另一个根是.(6)已知等腰三角形的腰和底的长分别是一元二次方程x²-6x+8=0的根,则该三角形的周长是多少?的图象上,则k的值为2.时间要求(10分钟以内)3.使用方式:发展性作业,提升学习能力,供学有余力的同学选做.8等级备注ABCA等,答案正确、过程正确。C等,答案不正确,有过程不完整;答案不准A等,过程规范,答案正确。B等,过程不够规范、完整,答案正确。A等,解法有新意和独到之处,答案正确。综合评价等级AAA、AAB综合评价为A等;ABB、BBB、AAC综5.作业分析与设计意图.第(5)题根据方程根的定义,代入求值得到字母的值,再去利用配方法解方程.第(6)题根据配方法解出一元二次方程的根,再结合等腰三角相关内容.第(7)题方程中多次采取完全平方公式配方,结合平方具有非负性得到未知数的值,利用待定系数法求得未知数的值.第(5)题设计意图是学生对方程根的掌握以及能熟练配方法的使用.第(6)题设计意图是学生对配方法的掌握以及分类讨论思想的掌握.第(7)题设计意图是培养学生对配方法的使用以及运用整体思想解题.第四课时:17.2.3一元二次方程的解法(公式法)A基础性作业(1)一元二次方程ax²+bx+c=0(a,b,c都是常数,且a≠0)的求根公式是,用求根公式的前提条件是(2)用公式法解一元二次方程-2x²-4x=1时,先求出a,b,c的值,则a,b,c依次为()A.2,4,1B.-2,-4,1C.2,4,-1D.2,-4,-1(3)在方程2x²+4x=3中,b²-4ac的值为()A.40B.-40(4)用公式法解方程.①x²+2x-1=0②2x²-x=32.时间要求(10分钟以内)3.使用方式:基础性作业,要求学生必做,用于课后巩固知识.9等级备注ABCA等,答案正确、过程正确。C等,答案不正确,有过程不完整;答案不准A等,过程规范,答案正确。B等,过程不够规范、完整,答案正确。A等,解法有新意和独到之处,答案正确。综合评价等级AAA、AAB综合评价为A等;ABB、BBB、AAC综5.作业分析与设计意图.第(1)题熟知一元二次方程求根公式.第(2)题使用求根公式前将方程化为一般式,确定a,b,c的值.作业第(3)题判断b²-4ac≥0之后使用求根公式解一元二次方程.第(4)题用公式法解一元二次方程的一般步骤以及求根公式的使用.第(1)题设计意图是通过求根公式渗透特殊到一般的数学思想.第(2)题设计意图是培养学生的类比推理能力.第(3)题设计意图是培养学生运用公式以及类比推理能力.第(4)题设计意图是运用公式解决问题.B发展性作业(5)是下列哪个一元二次方程的根()A.3x²+5x+1=0B.3x²-5x+1=0C.3x²-5x-1=0D.3x²+5x-1=0(6)用公式法解下列一元二次方程.2.时间要求(8分钟以内)3.使用方式:发展性作业,提升学习能力,供学有余力的同学选做.4.评价设计.等级备注ABCA等,答案正确、过程正确。C等,答案不正确,有过程不完整;答案不准A等,过程规范,答案正确。B等,过程不够规范、完整,答案正确。A等,解法有新意和独到之处,答案正确。综合评价等级AAA、AAB综合评价为A等;ABB、BBB、AAC综5.作业分析与设计意图.第(5)题根据公式法的公式,对应找到字母的值,写出一般式.作业第(6)题用公式法解一元二次方程的一般步骤以及求根公式的使用.第(5)题设计意图是学会辨析求根公式,培养学生的逆向思维.第(6)题设计意图是学会使用求根公式解一元二次方程.第五课时:17.2.4一元二次方程的解法(因式分解法)A基础性作业(1)用因式分解法解一元二次方程(2x+4)(x-1)=0,将它转化为两个一元二次方程是()A.2x-4=0,x-1=0B.2x-4=0,x+1=0C.2x+4=0,x-1=0D.2x(2)方程(x-3)(2x-1)=0的解是()(3)一元二次方程3x²-x=0的解是()(4)方程x(x-2)=3x的解为()A.x=5B.xi=0,x₂=5C.xi=2,x₂=0Dxi=0,p=-5(5)用因式分解法解方程.①x²-4x-5=0.②2.时间要求(10分钟以内)等级备注ABCA等,答案正确、过程正确。C等,答案不正确,有过程不完整;答案不准A等,过程规范,答案正确。B等,过程不够规范、完整,答案正确。A等,解法有新意和独到之处,答案正确。综合评价等级AAA、AAB综合评价为A等;ABB、BBB、AAC综第(1)题根据乘法性质得至少有一个因式等于,并求出一元一次方程得解. (4)、(5)题利用因式分解法转换为几个整式的乘积的形式,并利用乘法性质得方程得解.第(1)题设计意图是让学生知道因式分解的本质是降次的思想.第(2) B发展性作业方程求解,其中的一个方程是3x-4+5=0,则另一个方程是(6)已知方程x²+kx+3=0的一个根是-1,则k=,另一根为.(7)如果等腰三角形的两边长分别是方程x²-10x+21=0的两根,那么它的周(8)已知方程(x²-x)²-4(x²-x)=-4在实数范围内有解,求代数式2x²-2x+1等级备注ABCA等,答案正确、过程正确。C等,答案不正确,有过程不完整;答案不准A等,过程规范,答案正确。B等,过程不够规范、完整,答案正确。A等,解法有新意和独到之处,答案正确。综合评价等级AAA、AAB综合评价为A等;ABB、BBB、AAC综5.作业分析与设计意图.第(5)题根据因式分解解一元二次方程.第(6)题根据方程根的定义得出原方程,利用因式分解求得一元二次方程得解.第(7)题根据因式分解解一元二次方程,在等腰三角形求周长时需要分类讨论.第(8)题运用因式分解法解一元二次方程.第(5)题设计意图是培养学生对因式分解法的使用.第(6)题设计意图是培养学生对因式分解法的使用.第(7)题设计意图是培养学生对因式分解法的使用,以及分类讨论思想的运用.第(8)题设计意图是培养学生对因式分解法的使用,以及整体思想的运用.第六课时:17.3一元二次方程根的判别式A基础性作业(1)一元二次方程x²+2022=0的根的情况是()A.有两个相等的实数根B.有两个不等的实数根C.只有一个实数根D.无实数根(2)关于x的一元二次方程x²-4x+3=0的实数根有()(3)已知关于x的方程x²-3x+k=0有两个不相等的实数根,则k的取值范围是(4)一元二次方程(x-1)(x+5)=3x+1的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.只有一个实数根(5)不解方程,判别下列方程根的情况.2.时间要求(6分钟)等级备注ABCA等,答案正确、过程正确。C等,答案不正确,有过程不完整;答案不准A等,过程规范,答案正确。B等,过程不够规范、完整,答案正确。A等,解法有新意和独到之处,答案正确。综合评价等级AAA、AAB综合评价为A等;ABB、BBB、AAC综第(1)题考查一元二次方程根的判别式.设计意图是熟练计算根的判别式,并且由根的判别式判断根的情况.第(2)题考查用判别式判断一元二次方程的根选择合适、简单的方法.第(3)题根据判别式大于0和已知条件得到不等式求解.设计意图是会根据方程的根的情况确定方程中字母系数的取值范围.第(4)题先的计算能力,并能运用判别式判别方程根的情况.第(5)题不解方程判断方程根式判别方程根的情况.B发展性作业(6)若关于x的一元二次方程(k+1)x²-2x+1=0有实数根,则k满足()(7)已知关于x的方程kx²-6x+9=0有实数根A.k<1且k≠0B.k<1C.k≤1且k≠0D.k≤1(8)已知关于x的一元二次方程mx²-(2m-3)x+m-1=0有两个实数根.(9)已知关于x的方程2x²+kx+k-3=0.2.时间要求(10分钟)4.评价设计等级备注ABCA等,答案正确、过程正确。C等,答案不正确,有过程不完整;答案不准A等,过程规范,答案正确。B等,过程不够规范、完整,答案正确。A等,解法有新意和独到之处,答案正确。综合评价等级AAA、AAB综合评价为A等;ABB、BBB、AAC综5.作业分析与设计意图第(6)题根据二次项系数非零及根的判别式△≥0,得出关于k的不等式组.设计意图是让学生知道二次项系数非零及根的判别式△≥0是方程有根的条件.第(7)题本题题干是关于x的方程,所以“二次项系数可能为零”进行分类讨论,再求出k的取值范围.设计意图是在探索一元二次方程根的情况与根的判别式的关系中体会分类讨论的思想.第(8)题根据一元二次方程的定义和根的判别式得到m≠0,且△≥0,再进行求解.设计意图是让学生学会利用根的判别式确定一元二次方程中待定字母的取值范围或值,并会求方程的整数解问题.第(9)题应用根的判别式证明方程根的情况.设计意图是利用配方法和根的判别式来确定根的情况,提高学生解题的综合能力.第七课时:17.4一元二次方程的根与系数关系A基础性作业1.作业内容A.-1B.1A.-5B.5(3)若关于x的一元二次方程x²-bx+c=0的两根分别为x₁=1,x₂=-2,则b与c的值分别为()A.-1,2B.1,-2C.1,(4)已知关于x的一元二次方程x²+x+m²-2m=0有一个实数根为-1,求m的值及方程的另一个实数根.2.时间要求(8分钟)3.使用方式:基础性作业,要求学生必做,用于课后巩固知识.4.评价设计等级备注ABCA等,答案正确、过程正确。C等,答案不正确,有过程不完整;答案不准A等,过程规范,答案正确。B等,过程不够规范、完整,答案正确。A等,解法有新意和独到之处,答案正确。综合评价等级AAA、AAB综合评价为A等;ABB、BBB、AAC综5.作业设计与设计意图第(1)题考查一元二次方程根与系数关系,设计意图是了解一元二次方程根与系数关系,体验不解方程也能求出一元二次方程两根之和.第(2)题考查一元二次方程根与系数关系,设计意图是了解一元二次方程根与系数关系,体验不解方程也能求出一元二次方程两根之积.第(3)题考查一元二次方程根与系数关系,设计意图是让学生了解利用一元二次方程根与系数关系,求解各项系数,进一步了解一元二次方程的根与系数有密不可分的联系.第(4)题将x=-1代入方程求出m,再结合根与系数关系求出另一根.设计意图是当已知方程一根时,可以利用一元二次方程根与系数关系求解另一个根和待定字母的值.B发展性作业(5)已知关于x的一元二次方程x²+(m+2)x+m=0有两个实数根xj,x₂,且(6)关于x的一元二次方程ax²+bx+c=0,王同学由于看错了二次项系数,误求得两根分别为x₁=2,x₂=4,那(7)若等腰三角形的底边长为4,另两边长分别是关于x的方程x²-kx+9=0的(8)已知xj,x₂是关于x的一元二次方程x²-2(m+1)x+m²+5=0的两个实数根.这个三角形的周长.2.时间要求(12分钟)等级备注ABCA等,答案正确、过程正确。C等,答案不正确,有过程不完整;答案不准A等,过程规范,答案正确。B等,过程不够规范、完整,答案正确。A等,解法有新意和独到之处,答案正确。综合评价等级AAA、AAB综合评价为A等;ABB、BBB、AAC综第(5)题利用根与系数的关系求出两根之和、两计意图是利用一元二次方程根与系数关系和涉及根的式子的值求未知字母的值.第(6)题利用根与系数的关系求未知字母的值或范围,设计意图是让学生程的根与系数有密不可分的联系.第(7)题考查等腰三角形与方程根之间的关合思想.第(8)题考查根与系数的关系,以及一元二次方程的解与等腰三角形论思想.第八课时:17.5.1一元二次方程的应用(面积、数字问题)多少年华数周瑜?”假设周瑜去世时年龄的十位数字是x,则可列方程为()A.10x+(x-3)=(x-3)²B.C.10x+(x+3)=(x+3)²D.10(x+3)+x=(x+3)²求铁球落到地面所用的时间.(3)如图是一张月历表,在此月历表上可以用一个矩形任意圈出2×2个位置上相邻的数(如2,3,9,10).如果圈出的4个数中最大数与最小数的积为128,则这4个数中最小的数是多少?(4)如图,在一张边长为40cm的正方形硬纸板的四角各剪掉一个同样大小的正方形,剩余部分折成一个无盖的长方体盒子(纸板的厚度忽略不计).要使折成的长方体盒子的四个侧面的面积之和为800cm²,列出方程求剪掉的小正方形边长.2.时间要求(10分钟)3.使用方式:基础性作业,要求学生必做,用于课后巩固知识4.评价设计等级备注ABCA等,答案正确、过程正确。C等,答案不正确,有过程不完整;答案不准A等,过程规范,答案正确。B等,过程不够规范、完整,答案正确。A等,解法有新意和独到之处,答案正确。综合评价等级AAA、AAB综合评价为A等;ABB、BBB、AAC综5.作业分析与设计意图第(1)题根据题意表示数,从而列出一元二次方程.第(2)题是一元二次方程的简单应用.第(3)题会分别表示出最小数与最大数,解题关键是根据题意正确表示出最大数.第(4)题首先设剪掉的正方形的边长为xcm,则折成的长方体纸盒的长为(40-2x)cm,高为xcm,根据“折成的长方体盒子的四个侧面的面积之和为800cm²”,可得方程4(40-2x)x=800,再解方程即可.第(1)(2)3)(4)的设计意图都是学生会找准等量关系,能由实际问题抽象出一元二次方程,培养学生乐于探究的学习习惯.B发展性作业(5)如图,在一块长为16m,宽为10m的矩形空地中,修建2条同样宽的小路(图中阴影部分),剩下的部分种植草坪,要使草坪的面积为135m²,求道路(6)一个两位数,个位上的数字比十位上的数字小4,且个位数字与十位数字的平方和比这个两位数小4,若设个位数字为a,求这个两位数.造面积为450m²的长方形区域来养一些家禽,该单位给贫困户提供65m长 (全部用于建造长方形区域),并提供如图所示的两种方案:②如图2,若将墙AB全部借用,并在墙AB的延长线上拓展BF,构成长方形图1图22.时间要求(12分钟)等级备注ABCA等,答案正确、过程正确。C等,答案不正确,有过程不完整;答案不准A等,过程规范,答案正确。B等,过程不够规范、完整,答案正确。综合评价等级AAA、AAB综合评价为A等;ABB、BBB、AAC综5.作业分析与设计意图第(5)题可设道路宽为x米,利用平移把不规则的图形变为规则图形,进而即可列出方程,求出答案.本题体验通过移动变化分析面积问题的方法找出题目中的等量关系.第(6)题根据个位数与十位数的关系,会数的表示方法,会利用未知数表示两位数.第(7)题第①问设CF的长度为xm,则,由长方形的面积为450m²,即可得出关于x的一元二次方程,解之即可得出x的值,再结合墙AB的长为25m,即可确定x的值;第②问设BF的长为ym,则AD=(20-y)m,由长方形的面积为450m²,即可得出关于y的一元二次方程,解之取其正值即可得出结论.这3题的设计意图都是根据题意列出对应的方程求解,让学生体会一元二次方程是刻画现实世界一个有效的数学模型,感悟数学来源于生活,服务于生活,同时培养学生自我探索的兴趣和知识迁移的能力.第九课时:17.5.2一元二次方程的应用(增降率、比赛场次、握手问题)A基础性作业(1)如图是某公司去年8~12月份生产成本统计图,设9~11月每个月生产成本的下降率都为x,根据图中信息,得到x所满足的方程是(2)生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,这个小组的人数为()(3)新冠肺炎病毒是一种传染性极强的急性呼吸道传染病,感染者的临床以发热、乏力、干咳为主要表现.在“新冠肺炎”疫情初期,有1人感染了“新冠肺炎病毒”,如若得不到有效控制,经过两轮传染后共有196人感染了“新冠肺炎病毒”,则每轮传染中平均一个人传染了()(4)某校要组织篮球赛,赛制为单循环形式(每两队之间都赛一场).①如果有4支球队参加比赛,那么共进行场比赛;②如果全校一共进行36场比赛,那么有多少支球队参加比赛?2.时间要求(10分钟)3.使用方式:基础性作业,要求学生必做,用于课后巩固知识4.评价设计等级备注ABCA等,答案正确、过程正确。C等,答案不正确,有过程不完整;答案不准A等,过程规范,答案正确。B等,过程不够规范、完整,答案正确。A等,解法有新意和独到之处,答案正确。综合评价等级AAA、AAB综合评价为A等;ABB、BBB、AAC综第(1)题中的下降率和增长率是同种问题,通过简单的图表帮助学生列出一元二次方程并求解.设计意图是让学生能理形式为a(1+x)²=b,a为起始时的有关数量,b为终止时的有关数量,能正确的列出方程,同时要学会如何验根.第(2)题设生物兴趣小组共有x人,则每人学生感受数学在实际生活中的应用.第(3)题根据a(1+x)n=b其中a表示传问题的方法,体会数学的应用价值.第(4)题根据参加比赛球队的数量及赛制,(5)象棋比赛中,每个选手与其他选手将比赛一场,每局胜者记2分,败者记0分,如果平局,每人各记1分,今有4位同学统计了比赛中全部选手得分的总和分别为2025,2070,2080,2085分,经核实,其中只有一位同学是正确的,2.时间要求(8分钟)等级备注ABCA等,答案正确、过程正确。C等,答案不正确,有过程不完整;答案不准A等,过程规范,答案正确。B等,过程不够规范、完整,答案正确。A等,解法有新意和独到之处,答案正确。综合评价等级AAA、AAB综合评价为A等;ABB、BBB、AAC综第(5)题不管一局比赛有没有分出胜负,对局双方总分都是2分.设有x名考查的等量关系为:局×选手数×(选手数-1);2×局数=所得分数,得到局数是解决本题的难点.设计意图是让学生探究第10课时:17.5.3一元二次方程的应用(商品利润问题)A基础性作业(1)某商场将进价为每件20元的玩具以每件30元的价格出售时,每天可售出300件,经调查发现,当每件玩具每涨1元时,误的是()B.涨价后每天少售出玩具的数量是10x件(2)某商场销售一批衬衣,每件衬衣的进价为80元,平均每天可售出30件,每件衬衣盈利50元.为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衣降价10元,商场平均每天可多售出20件.若商场平均每天盈利2000元,则每件衬衣应降价多少元?解:设每件衬衫应降价x元.:“增加盈利,减少库存”,答:商场平均每天盈利2000元,每件衬衣应降价元.2.时间要求(6分钟)等级备注ABCA等,答案正确、过程正确。C等,答案不正确,有过程不完整;答案不准确A等,过程规范,答案正确。B等,过程不够规范、完整,答案正确。A等,解法有新意和独到之处,答案正确。综合评价等级AAA、AAB综合评价为A等;ABB、BBB、AAC综第(1)题正确理解玩具价格和玩具数量的关系,设计意图是经历建立方程模型解决实际问题的过程中,培养和提高学生分析问题和解决问题的能力.第(2)题利用衬衣平均每天售出的件数×每件盈利=每天销售这种衬衣利润,列出方程解答即可.设计意图是通过问题设计(3)某水果店销售一种水果的成本价是5元/千克,在销售中发现,当这种水果的价格定为7元/千克时,每天可以卖出160千克,在此基础上,这种水果的单价每提高1元/千克.该水果店每天就会少卖出20千克,设这种水果的单价为①请用含x的代数式表示:每千克水果的利润元及每天的销售量千②若该水果店一天销售这种水果所获得的利润是420元,为了让利于顾客.单价应定为多少元?2.时间要求(8分钟以内)3.使用方式:发展性作业,提升学习能力,供学有余力的学生选做等级备注ABCA等,答案正确、过程正确。C等,答案不正确,有过程不完整;答案不准B等,过程不够规范、完整,答案正确。A等,解法有新意和独到之处,答案正确。综合评价等级AAA、AAB综合评价为A等;ABB、BBB、AAC综5.作业分析与设计意图第(3)题是根据利用销量×每千克利润=总利润,正确得出等量关系是解题关键.设计意图是让学生发现可以利用一元二次方程来解决的实际问题,经历“问题情境——建立模型-—解释应用拓展”的过程,培养学生分析问题、解决问题的能力.第11课时:17.5.4可化为一元二次方程的分式方程及应用A基础性作业1.作业内容(1)解分式方(2)某品牌瓶装饮料每箱价格26元,某商店对该瓶装饮料进行“买一送三”促销活动,若整箱购买,则买一箱送三瓶,这相当于每瓶比原价便宜了0.6元,总费用/元x(3)甲、乙两辆货车分别从A,B两城同时沿高速公路向C城运送货物.已知A、2.时间要求(13分钟)等级备注ABCA等,答案正确、过程正确。C等,答案不正确,有过程不完整;答案不准A等,过程规范,答案正确。B等,过程不够规范、完整,答案正确。A等,解法有新意和独到之处,答案正确。综合评价等级AAA、AAB综合评价为A等;ABB、BBB、AAC综第(1)题会解分式方程,并要验根.设计意图是复习巩固可化为一元二次方程的分式方程的解法.第(2)题主要考查分式方程的应用,根据“买一箱送三瓶相当于每瓶比原价便宜了0.6元”列分式方程求解,并知道验根.通过表格设计关系列方程.解分式方程应用题时,所得根不它有无实际意义.本题设计主要让学生对解解,初步体验数学建模思想.第(3)题设乙车的速度为x千米/时,则甲车的速度为(x+10)千米/时,由甲车比乙车早半小时到达C城,以时间作为B发展性作业(5)十一黄金周期间,某高校几名学生准备外出旅游,有两项支出需要提前①备用食品费:购买备用食品共花费300元,在出发时,又有两名同学要加入(不再增加备用食品费用),因此,先参加的同学平均每人比原来少分摊5元.适的租车方案(仅从租车费角度考虑),并说明理由.车型座数租车费(元/辆)A7B52.时间要求(12分钟)等级备注ABCA等,答案正确、过程正确。C等,答案不正确,有过程不完整;答案不准A等,过程规范,答案正确。B等,过程不够规范、完整,答案正确。A等,解法有新意和独到之处,答案正确。综合评价等级AAA、AAB综合评价为A等;ABB、BBB、AAC综为B等;其余情况综合评价为C等5.作业分析与设计意图第(4)题根据单价=总价÷数量结合少拿一株椽后剩下的椽的运费恰好等于一株椽的价钱,设计意图是通过创设古代著作《四元玉鉴》中记载的现实问题,引导学生分析其中的等量关系,建立分式方程,也是增强学生文化自信,提高学生的学习兴趣.第(5)题考查可化为一元二次方程的分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是关键.加大问题情境的复杂程度,引导学生借助列表的方法,挖掘题中隐含的等量关系,主要培养学生的思维转换能力、分析问题能力,培养创新意识.六、单元质量检测作业(一)单元质量检测作业内容一、选择题(单项选择)2已知关于的方程2-(6+1)〕-6-0的个根为□--3.则实数。的值3.若方程□²-4□+'。=0有两个不相等的实根,化简16-8o·+o·2等于
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 利用数字密钥引领-浅析办公过程中的信息安全防护问题
- 公司内部不同部门间医疗大数踞项目人员薪资对比分析
- 办公室文化与医患信任的建立
- 企业级智能合约与区块链安全防护实践
- 2025年甘肃省平凉市崆峒区中考一模地理试题(原卷版+解析版)
- AI在医疗决策中的角色与患者权益的平衡
- 以患者体验为先医疗创新平台下的远程医疗服务设计
- 关于打造可持续的医疗APP隐私保护生态系统的思考
- AI技术在健康保险领域的应用及法律风险控制
- 企业级区块链技术的未来发展
- 射频消融治疗痔疮
- 第5课《平安校园靠大家》课件
- 国企统战工作总结汇报
- 《含能材料与应用》课件
- 土地管理法实施条例考试试题
- 真实的PBL真实的挑战:项目式学习设计指南
- 水果批发市场项目商业计划书
- 前庭大腺囊肿护理查房课件
- 高考数学刷题:全国一模套卷(12套含答案)
- 施工方案塔吊验收
- 井下停送电安全工作规程
评论
0/150
提交评论