2022年陕西省榆林市横山区第二中学中考数学模拟预测题含解析_第1页
2022年陕西省榆林市横山区第二中学中考数学模拟预测题含解析_第2页
2022年陕西省榆林市横山区第二中学中考数学模拟预测题含解析_第3页
2022年陕西省榆林市横山区第二中学中考数学模拟预测题含解析_第4页
2022年陕西省榆林市横山区第二中学中考数学模拟预测题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年陕西省榆林市横山区第二中学中考数学模拟预测题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知抛物线y=ax2+bx+c(a≠1)的对称轴为直线x=2,与x轴的一个交点坐标为(4,1),其部分图象如图所示,下列结论:①抛物线过原点;②a﹣b+c<1;③当x<1时,y随x增大而增大;④抛物线的顶点坐标为(2,b);⑤若ax2+bx+c=b,则b2﹣4ac=1.其中正确的是()A.①②③ B.①④⑤ C.①②④ D.③④⑤2.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为()A.180元 B.200元 C.225元 D.259.2元3.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①abc<0;②2a+b=0;③b2-4ac<0;④9a+3b+c>0;⑤c+8a<0.正确的结论有().A.1个 B.2个 C.3个 D.4个4.的值是A.±3 B.3 C.9 D.815.关于x的一元二次方程(m﹣2)x2+(2m﹣1)x+m﹣2=0有两个不相等的正实数根,则m的取值范围是()A.m> B.m>且m≠2 C.﹣<m<2 D.<m<26.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有()A.4个 B.5个 C.6个 D.7个7.下列函数中,二次函数是()A.y=﹣4x+5 B.y=x(2x﹣3)C.y=(x+4)2﹣x2 D.y=8.如图,△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE,若△CDE的周长为21,则BC的长为()A.16 B.14 C.12 D.69.关于的方程有实数根,则整数的最大值是()A.6 B.7 C.8 D.910.在实数|﹣3|,﹣2,0,π中,最小的数是()A.|﹣3| B.﹣2 C.0 D.π11.有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的()A.方差 B.中位数 C.众数 D.平均数12.如图,在4×4的正方形网格中,每个小正方形的边长都为1,△AOB的三个顶点都在格点上,现将△AOB绕点O逆时针旋转90°后得到对应的△COD,则点A经过的路径弧AC的长为()A. B.π C.2π D.3π二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,菱形的边,,是上一点,,是边上一动点,将梯形沿直线折叠,的对应点为,当的长度最小时,的长为__________.14.如图,AC、BD为圆O的两条垂直的直径,动点P从圆心O出发,沿线段OC-A.B.C.D.15.当x=_____时,分式值为零.16.比较大小:_____1(填“<”或“>”或“=”).17.如图,在平面直角坐标系xOy中,直线l:y=x-与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,按此规律进行下去,则点A3的横坐标为______;点A2018的横坐标为______.18.如图,正方形ABCD的边长为,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为点F,则EF的长是__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)解不等式组,并把它的解集表示在数轴上.20.(6分)如图,已知在梯形ABCD中,,P是线段BC上一点,以P为圆心,PA为半径的与射线AD的另一个交点为Q,射线PQ与射线CD相交于点E,设.(1)求证:;(2)如果点Q在线段AD上(与点A、D不重合),设的面积为y,求y关于x的函数关系式,并写出定义域;(3)如果与相似,求BP的长.21.(6分)如图,一位测量人员,要测量池塘的宽度的长,他过两点画两条相交于点的射线,在射线上取两点,使,若测得米,他能求出之间的距离吗?若能,请你帮他算出来;若不能,请你帮他设计一个可行方案.22.(8分)如图,AB是⊙O的直径,点C在⊙O上,CE^AB于E,CD平分ÐECB,交过点B的射线于D,交AB于F,且BC=BD.(1)求证:BD是⊙O的切线;(2)若AE=9,CE=12,求BF的长.23.(8分)在星期一的第八节课,我校体育老师随机抽取了九年级的总分学生进行体育中考的模拟测试,并对成绩进行统计分析,绘制了频数分布表和统计图,按得分划分成A、B、C、D、E、F六个等级,并绘制成如下两幅不完整的统计图表.等级得分x(分)频数(人)A95<x≤1004B90<x≤95mC85<x≤90nD80<x≤8524E75<x≤808F70<x≤754请你根据图表中的信息完成下列问题:(1)本次抽样调查的样本容量是.其中m=,n=.(2)扇形统计图中,求E等级对应扇形的圆心角α的度数;(3)我校九年级共有700名学生,估计体育测试成绩在A、B两个等级的人数共有多少人?(4)我校决定从本次抽取的A等级学生(记为甲、乙、丙、丁)中,随机选择2名成为学校代表参加全市体能竞赛,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率.24.(10分)已知:如图所示,在中,,,求和的度数.25.(10分)某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:①该产品90天售量(n件)与时间(第x天)满足一次函数关系,部分数据如下表:时间(第x天)12310…日销售量(n件)198196194?…②该产品90天内每天的销售价格与时间(第x天)的关系如下表:时间(第x天)1≤x<5050≤x≤90销售价格(元/件)x+60100(1)求出第10天日销售量;(2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品的销售利润最大?最大利润是多少?(提示:每天销售利润=日销售量×(每件销售价格-每件成本))(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.26.(12分)((1)计算:;(2)先化简,再求值:,其中a=.27.(12分)如图所示,点C为线段OB的中点,D为线段OA上一点.连结AC、BD交于点P.(问题引入)(1)如图1,若点P为AC的中点,求的值.温馨提示:过点C作CE∥AO交BD于点E.(探索研究)(2)如图2,点D为OA上的任意一点(不与点A、O重合),求证:.(问题解决)(3)如图2,若AO=BO,AO⊥BO,,求tan∠BPC的值.

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解析】

由抛物线的对称轴结合抛物线与x轴的一个交点坐标,可求出另一交点坐标,结论①正确;当x=﹣1时,y>1,得到a﹣b+c>1,结论②错误;根据抛物线的对称性得到结论③错误;将x=2代入二次函数解析式中结合4a+b+c=1,即可求出抛物线的顶点坐标,结论④正确;根据抛物线的顶点坐标为(2,b),判断⑤.【详解】解:①∵抛物线y=ax2+bx+c(a≠1)的对称轴为直线x=2,与x轴的一个交点坐标为(4,1),∴抛物线与x轴的另一交点坐标为(1,1),∴抛物线过原点,结论①正确;②∵当x=﹣1时,y>1,∴a﹣b+c>1,结论②错误;③当x<1时,y随x增大而减小,③错误;④抛物线y=ax2+bx+c(a≠1)的对称轴为直线x=2,且抛物线过原点,∴c=1,∴b=﹣4a,c=1,∴4a+b+c=1,当x=2时,y=ax2+bx+c=4a+2b+c=(4a+b+c)+b=b,∴抛物线的顶点坐标为(2,b),结论④正确;⑤∵抛物线的顶点坐标为(2,b),∴ax2+bx+c=b时,b2﹣4ac=1,⑤正确;综上所述,正确的结论有:①④⑤.故选B.【点睛】本题考查的是二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.2、A【解析】

设这种商品每件进价为x元,根据题中的等量关系列方程求解.【详解】设这种商品每件进价为x元,则根据题意可列方程270×0.8-x=0.2x,解得x=180.故选A.【点睛】本题主要考查一元一次方程的应用,解题的关键是确定未知数,根据题中的等量关系列出正确的方程.3、C【解析】

由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】解:抛物线开口向下,得:a<0;抛物线的对称轴为x=-=1,则b=-2a,2a+b=0,b=-2a,故b>0;抛物线交y轴于正半轴,得:c>0.∴abc<0,①正确;2a+b=0,②正确;由图知:抛物线与x轴有两个不同的交点,则△=b2-4ac>0,故③错误;由对称性可知,抛物线与x轴的正半轴的交点横坐标是x=3,所以当x=3时,y=9a+3b+c=0,故④错误;观察图象得当x=-2时,y<0,即4a-2b+c<0∵b=-2a,∴4a+4a+c<0即8a+c<0,故⑤正确.正确的结论有①②⑤,故选:C【点睛】主要考查图象与二次函数系数之间的关系,会利用对称轴的表达式求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.4、C【解析】试题解析:∵∴的值是3故选C.5、D【解析】

根据一元二次方程的根的判别式的意义得到m-2≠0且Δ=(2m-1)2-4(m-2)(m-2)>0,解得m>且m≠﹣2,再利用根与系数的关系得到,m﹣2≠0,解得<m<2,即可求出答案.【详解】解:由题意可知:m-2≠0且Δ=(2m﹣1)2﹣4(m﹣2)2=12m﹣15>0,∴m>且m≠﹣2,∵(m﹣2)x2+(2m﹣1)x+m﹣2=0有两个不相等的正实数根,∴﹣>0,m﹣2≠0,∴<m<2,∵m>,∴<m<2,故选:D.【点睛】本题主要考查对根的判别式和根与系数的关系的理解能力及计算能力,掌握根据方程根的情况确定方程中字母系数的取值范围是解题的关键.6、B【解析】

由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数.【详解】由主视图和左视图可确定所需正方体个数最少时俯视图(数字为该位置小正方体的个数)为:则搭成这个几何体的小正方体最少有5个,故选B.【点睛】本题考查了由三视图判断几何体,根据主视图和左视图画出所需正方体个数最少的俯视图是关键.【详解】请在此输入详解!【点睛】请在此输入点睛!7、B【解析】A.y=-4x+5是一次函数,故此选项错误;B.

y=x(2x-3)=2x2-3x,是二次函数,故此选项正确;C.

y=(x+4)2−x2=8x+16,为一次函数,故此选项错误;D.

y=是组合函数,故此选项错误.故选B.8、C【解析】

先根据等腰三角形三线合一知D为BC中点,由点E为AC的中点知DE为△ABC中位线,故△ABC的周长是△CDE的周长的两倍,由此可求出BC的值.【详解】∵AB=AC=15,AD平分∠BAC,∴D为BC中点,∵点E为AC的中点,∴DE为△ABC中位线,∴DE=AB,∴△ABC的周长是△CDE的周长的两倍,由此可求出BC的值.∴AB+AC+BC=42,∴BC=42-15-15=12,故选C.【点睛】此题主要考查三角形的中位线定理,解题的关键是熟知等腰三角形的三线合一定理.9、C【解析】

方程有实数根,应分方程是一元二次方程与不是一元二次方程,两种情况进行讨论,当不是一元二次方程时,a-6=0,即a=6;当是一元二次方程时,有实数根,则△≥0,求出a的取值范围,取最大整数即可.【详解】当a-6=0,即a=6时,方程是-1x+6=0,解得x=;

当a-6≠0,即a≠6时,△=(-1)2-4(a-6)×6=201-24a≥0,解上式,得≈1.6,

取最大整数,即a=1.故选C.10、B【解析】

直接利用利用绝对值的性质化简,进而比较大小得出答案.【详解】在实数|-3|,-1,0,π中,|-3|=3,则-1<0<|-3|<π,故最小的数是:-1.故选B.【点睛】此题主要考查了实数大小比较以及绝对值,正确掌握实数比较大小的方法是解题关键.11、A【解析】试题分析:方差是用来衡量一组数据波动大小的量,体现数据的稳定性,集中程度;方差越大,即波动越大,数据越不稳定;反之,方差越小,数据越稳定.故教练要分析射击运动员成绩的波动程度,只需要知道训练成绩的方差即可.故选A.考点:1、计算器-平均数,2、中位数,3、众数,4、方差12、A【解析】

根据旋转的性质和弧长公式解答即可.【详解】解:∵将△AOB绕点O逆时针旋转90°后得到对应的△COD,∴∠AOC=90°,∵OC=3,∴点A经过的路径弧AC的长==,故选:A.【点睛】此题考查弧长计算,关键是根据旋转的性质和弧长公式解答.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、【解析】如图所示,过点作,交于点.在菱形中,∵,且,所以为等边三角形,.根据“等腰三角形三线合一”可得,因为,所以.在中,根据勾股定理可得,.因为梯形沿直线折叠,点的对应点为,根据翻折的性质可得,点在以点为圆心,为半径的弧上,则点在上时,的长度最小,此时,因为.所以,所以,所以.点睛:A′为四边形ADQP沿PQ翻折得到,由题目中可知AP长为定值,即A′点在以P为圆心、AP为半径的圆上,当C、A′、P在同一条直线时CA′取最值,由此结合直角三角形勾股定理、等边三角形性质求得此时CQ的长度即可.14、C.【解析】分析:根据动点P在OC上运动时,∠APB逐渐减小,当P在上运动时,∠APB不变,当P在DO上运动时,∠APB逐渐增大,即可得出答案.解答:解:当动点P在OC上运动时,∠APB逐渐减小;当P在上运动时,∠APB不变;当P在DO上运动时,∠APB逐渐增大.故选C.15、﹣1.【解析】试题解析:分式的值为0,则:解得:故答案为16、<【解析】

∵≈0.62,0.62<1,∴<1;故答案为<.17、【解析】

利用一次函数图象上点的坐标特征可求出点B1的坐标,根据等边三角形的性质可求出点A1的坐标,同理可得出点B2、A2、A3的坐标,根据点An坐标的变化即可得出结论.【详解】当y=0时,有x-=0,解得:x=1,∴点B1的坐标为(1,0),∵A1OB1为等边三角形,∴点A1的坐标为(,).当y=时.有x-=,解得:x=,∴点B2的坐标为(,),∵A2A1B2为等边三角形,∴点A2的坐标为(,).同理,可求出点A3的坐标为(,),点A2018的坐标为(,).故答案为;.【点睛】本题考查了一次函数图象上点的坐标特征、等边三角形的性质以及规律型中点的坐标,根据一次函数图象上点的坐标特征结合等边三角形的性质找出点An横坐标的变化是解题的关键.18、2【解析】

设EF=x,先由勾股定理求出BD,再求出AE=ED,得出方程,解方程即可.【详解】设EF=x,

∵四边形ABCD是正方形,

∴AB=AD,∠BAD=90°,∠ABD=∠ADB=45°,

∴BD=AB=4+4,EF=BF=x,

∴BE=x,

∵∠BAE=22.5°,

∴∠DAE=90°-22.5°=67.5°,

∴∠AED=180°-45°-67.5°=67.5°,

∴∠AED=∠DAE,

∴AD=ED,

∴BD=BE+ED=x+4+2=4+4,

解得:x=2,

即EF=2.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、不等式组的解是x≥3;图见解析【解析】

先求出每个不等式的解集,再求出不等式组的解集即可.【详解】解:∵解不等式①,得x≥3,解不等式②,得x≥-1.5,∴不等式组的解是x≥3,在数轴上表示为:.【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集找出不等式组的解集是解此题的关键.20、(1)见解析;(2);(3)当或8时,与相似.【解析】

(1)想办法证明即可解决问题;(2)作A于M,于N.则四边形AMPN是矩形.想办法求出AQ、PN的长即可解决问题;(3)因为,所以,又,推出,推出相似时,与相似,分两种情形讨论即可解决问题;【详解】(1)证明:四边形ABCD是等腰梯形,,,,,,,.(2)解:作于M,于N.则四边形是矩形.在中,,,,,,.(3)解:,,,相似时,与相似,,当时,,此时,当时,,此时,综上所述,当PB=5或8时,与△相似.【点睛】本题考查几何综合题、圆的有关性质、等腰梯形的性质,锐角三角函数、相似三角形的判定和性质、平行线的性质等知识,解题的关键是正确寻找相似三角形解决问题,学会添加常用辅助线,构造直角三角形和特殊四边形解决问题,属于中考压轴题.21、可以求出A、B之间的距离为111.6米.【解析】

根据,(对顶角相等),即可判定,根据相似三角形的性质得到,即可求解.【详解】解:∵,(对顶角相等),∴,∴,∴,解得米.所以,可以求出、之间的距离为米【点睛】考查相似三角形的应用,掌握相似三角形的判定方法和性质是解题的关键.22、(1)证明见解析;(2)1.【解析】试题分析:(1)根据垂直的定义可得∠CEB=90°,然后根据角平分线的性质和等腰三角形的性质,判断出∠1=∠D,从而根据平行线的判定得到CE∥BD,根据平行线的性质得∠DBA=∠CEB,由此可根据切线的判定得证结果;(2)连接AC,由射影定理可得CE试题解析:(1)证明:∵CE⊥AB,∴∠CEB=90∵CD平分∠ECB,BC=BD,∴∠1=∠2,∠2=∠D.∴∠1=∠D.∴CE∥BD.∴∠DBA=∠CEB=90∵AB是⊙O的直径,∴BD是⊙O的切线.(2)连接AC,∵AB是⊙O直径,∴∠ACB=90∵CE⊥AB,可得CE∴在Rt△CEB中,∠CEB=90°,由勾股定理得BC=∴BD=BC=20.∵∠1=∠D,∠EFC=∠BFD,∴△EFC∽△BFD.∴.∴1220∴BF=1.考点:切线的判定,相似三角形,勾股定理23、(1)80,12,28;(2)36°;(3)140人;(4)【解析】

(1)用D组的频数除以它所占的百分比得到样本容量;用样本容量乘以B组所占的百分比得到m的值,然后用样本容量分别减去其它各组的频数即可得到n的值;(2)用E组所占的百分比乘以360°得到α的值;(3)利用样本估计整体,用700乘以A、B两组的频率和可估计体育测试成绩在A、B两个等级的人数;(4)画树状图展示所有12种等可能的结果数,再找出恰好抽到甲和乙的结果数,然后根据概率公式求解.【详解】(1)24÷30%=80,所以样本容量为80;m=80×15%=12,n=80﹣12﹣4﹣24﹣8﹣4=28;故答案为80,12,28;(2)E等级对应扇形的圆心角α的度数=×360°=36°;(3)700×=140,所以估计体育测试成绩在A、B两个等级的人数共有140人;(4)画树状图如下:共12种等可能的结果数,其中恰好抽到甲和乙的结果数为2,所以恰好抽到甲和乙的概率=.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.也考查了统计图.24、,.【解析】

根据等腰三角形的性质即可求出∠B,再根据三角形外角定理即可求出∠C.【详解】在中,,∵,在三角形中,,又∵,在三角形中,∴.【点睛】此题主要考查等腰三角形的性质,解题的关键是熟知等边对等角.25、(1)1件;(2)第40天,利润最大7200元;(3)46天【解析】试题分析:(1)根据待定系数法解出一次函数解析式,然后把x=10代入即可;(2)设利润为y元,则当1≤x<50时,y=﹣2x2+160x+4000;当50≤x≤90时,y=﹣120x+12000,分别求出各段上的最大值,比较即可得到结论;(3)直接写出在该产品销售的过程中,共有46天销售利润不低于5400元.试题解析:解:(1)∵n与x成一次函数,∴设n=kx+b,将x=1,m=198,x=3,m=194代入,得:,解得:,所以n关于x的一次函数表达式为n=-2x+200;当x=10时,n=-2×10+200=1.(2)设销售该产品每天利润为y元,y关于x的函数表达式为:当1≤x<50时,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论