求函数最值的常用方法_第1页
求函数最值的常用方法_第2页
求函数最值的常用方法_第3页
求函数最值的常用方法_第4页
求函数最值的常用方法_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

求函数最值的常用方法求函数最值的常用以下方法:1.函数单调性法先确定函数在给定区间上的单调性,然后依据单调性求函数的最值.这种利用函数单调性求最值的方法就是函数单调性法.这种求解方法在高考中是必考的,且多在解答题中的某一问中出现.例1设a>1,函数f(x)=logax在区间[a,2a]上的最大值与最小值之差为eq\f(1,2),则a=________.【思路】先判断函数在指定区间上的单调性,再求出函数的最值,然后利用条件求得参数a的值.【解析】∵a>1,∴函数f(x)=logax在区间[a,2a]上是增函数,∴函数在区间[a,2a]上的最大值与最小值分别为loga2a,logaa=1.∴loga2=eq\f(1,2),a=4.故填4.【讲评】解决这类问题的重要的一步就是判断函数在给定区间上的单调性.这一点处理好了,以下的问题就容易了.一般而言,对一次函数、幂函数、指数函数、对数函数在闭区间[m,n]上的最值:若函数f(x)在[m,n]上单调递增,则f(x)min=f(m),f(x)max=f(n);若函数f(x)在[m,n]上单调递减,则f(x)min=f(n),f(x)max=f(m);若函数f(x)在[m,n]上不单调,但在其分成的几个子区间上是单调的,则可以采用分段函数求最值的方法处理.2.换元法换元法是指通过引入一个或几个新的变量,来替换原来的某些变量(或代数式),以便使问题得以解决的一种数学方法.在学习中,常常使用的换元法有两类,即代数换元和三角换元,我们可以根据具体问题及题目形式去灵活选择换元的方法,以便将复杂的函数最值问题转化为简单函数的最值问题,从而求出原函数的最值.如可用三角代换解决形如a2+b2=1及部分根式函数形式的最值问题.例2(1)函数f(x)=x+2eq\r(1-x)的最大值为________.【解析】方法一:设eq\r(1-x)=t(t≥0),∴x=1-t2,∴y=x+2eq\r(1-x)=1-t2+2t=-t2+2t+1=-(t-1)2+2,∴当t=1即x=0时,ymax=2.方法二:f(x)的定义域为{x|x≤1},f′(x)=1-eq\f(1,\r(1-x)),由f′(x)=0得x=0.0<x≤1时,f′(x)<0,f(x)为减函数.x<0时,f′(x)>0,f(x)为增函数.∴当x=0时,f(x)max=f(0)=2.(2)求函数y=x+eq\r(4-x2)的值域.【解析】换元法:由4-x2≥0得-2≤x≤2,∴设x=2cosθ(θ∈[0,π]),则y=2cosθ+eq\r(4-4cos2θ)=2cosθ+2sinθ=2eq\r(2)sin(θ+eq\f(π,4)),∵θ+eq\f(π,4)∈[eq\f(π,4),eq\f(5π,4)]∴sin(θ+eq\f(π,4))∈[-eq\f(\r(2),2),1],∴y∈[-2,2eq\r(2)].3.配方法配方法是求二次函数最值的基本方法,如F(x)=af2(x)+bf(x)+c的函数的最值问题,可以考虑用配方法.例3已知函数y=(ex-a)2+(e-x-a)2(a∈R,a≠0),求函数y的最小值.【思路】将函数表达式按ex+e-x配方,转化为关于变量ex+e-x的二次函数.【解析】y=(ex-a)2+(e-x-a)2=(ex+e-x)2-2a(ex+e-x)+2a令t=ex+e-x,f(t)=t2-2at+2a2∵t≥2,∴f(t)=t2-2at+2a2-2=(t-a)2+a2-2的定义域为∵抛物线y=f(t)的对称轴为t=a,∴当a≤2且a≠0时,ymin=f(2)=2(a-1)2;当a<0时,ymin=f(a)=a2-2.【讲评】(1)利用导数法求函数最值的三个步骤:第一,求函数在(a,b)内的极值;第二,求函数在端点的函数值f(a)、f(b);第三,比较上述极值与端点函数值的大小,即得函数的最值.(2)函数的最大值及最小值点必在以下各点中取得:导数为零的点,导数不存在的点及其端点.8.线性规划法线性规划法,是指利用线性规划的基本知识求解函数最值的方法.线性规划法求解最值问题,一般有以下几步:(1)由条件写出约束条件;(2)画出可行域,并求最优解;(3)根据目标函数及最优解,求出最值.例8已知点P(x,y)的坐标同时满足以下不等式:x+y≤4,y≥x,x≥1,如果点O为坐标原点,那么|OP|的最小值等于________,最大值等于________.【思路】本题实质上可以视为线性规划问题,求解时,先找出约束条件,再画可行域,最后求出最值.【解析】由题意,得点P(x,y)的坐标满足eq\b\lc\{\rc\(\a\vs4\al\co1(x+y≤4,,y≥x,,x≥1.))画出可行域,如图所

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论