甘肃省临夏地区夏河中学2024年高一数学第二学期期末达标检测试题含解析_第1页
甘肃省临夏地区夏河中学2024年高一数学第二学期期末达标检测试题含解析_第2页
甘肃省临夏地区夏河中学2024年高一数学第二学期期末达标检测试题含解析_第3页
甘肃省临夏地区夏河中学2024年高一数学第二学期期末达标检测试题含解析_第4页
甘肃省临夏地区夏河中学2024年高一数学第二学期期末达标检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

甘肃省临夏地区夏河中学2024年高一数学第二学期期末达标检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知数列{an}满足a1=2A.2 B.-3 C.-122.已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边上有两点,,且,则A. B. C. D.3.函数的单调增区间是()A. B.C. D.4.过点且与点距离最大的直线方程是()A. B.C. D.5.已知等差数列前n项的和为,,,则()A.25 B.26 C.27 D.286.已知直线,与互相垂直,则的值是()A. B.或 C. D.或7.已知关于的不等式对任意恒成立,则的取值范围是()A. B.C. D.8.已知,则()A. B. C. D.9.在△ABC中,角A、B、C所对的边分别为a、b、c,若acosA=bcosB,则△ABC的形状为()A.等腰三角形B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形10.若,,,点C在AB上,且,设,则的值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知等差数列的前n项和为,若,则的值为______________.12.在明朝程大位《算术统宗》中有这样的一首歌谣:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯”.这首古诗描述的这个宝塔古称浮屠,本题说“宝塔一共有七层,每层悬挂的红灯数是上一层的2倍,共有381盏灯,问塔顶有几盏灯?”根据上述条件,从上往下数第二层有___________盏灯.13.在△ABC中,若,则△ABC的形状是____.14.已知数列的前n项和,则________.15.已知曲线与直线交于A,B两点,若直线OA,OB的倾斜角分别为、,则__________16.一个公司共有240名员工,下设一些部门,要采用分层抽样方法从全体员工中抽取一个容量为20的样本.已知某部门有60名员工,那么从这一部门抽取的员工人数是.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(2012年苏州17)如图,在中,已知为线段上的一点,且.(1)若,求的值;(2)若,且,求的最大值.18.经过长期观测得到:在交通繁忙的时段内,某公路汽车的车流量(千辆/h)与汽车的平均速度之间的函数关系式为:.(1)若要求在该段时间内车流量超过2千辆,则汽车在平均速度应在什么范围内?(2)在该时段内,若规定汽车平均速度不得超过,当汽车的平均速度为多少时,车流量最大?最大车流量为多少?19.已知圆心在轴的正半轴上,且半径为2的圆被直线截得的弦长为.(1)求圆的方程;(2)设动直线与圆交于两点,则在轴正半轴上是否存在定点,使得直线与直线关于轴对称?若存在,请求出点的坐标;若不存在,请说明理由.20.已知是第三象限角,.(1)化简;(2)若,求的值.21.已知曲线上的任意一点到两定点、距离之和为,直线交曲线于两点,为坐标原点.(1)求曲线的方程;(2)若不过点且不平行于坐标轴,记线段的中点为,求证:直线的斜率与的斜率的乘积为定值;(3)若直线过点,求面积的最大值,以及取最大值时直线的方程.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

先通过列举找到数列的周期,再利用数列的周期求值.【详解】由题得a2所以数列的周期为4,所以a2020故选:D【点睛】本题主要考查递推数列和数列的周期,意在考查学生对这些知识的理解掌握水平,属于基础题.2、B【解析】

首先根据两点都在角的终边上,得到,利用,利用倍角公式以及余弦函数的定义式,求得,从而得到,再结合,从而得到,从而确定选项.【详解】由三点共线,从而得到,因为,解得,即,所以,故选B.【点睛】该题考查的是有关角的终边上点的纵坐标的差值的问题,涉及到的知识点有共线的点的坐标的关系,余弦的倍角公式,余弦函数的定义式,根据题中的条件,得到相应的等量关系式,从而求得结果.3、D【解析】

化简函数可得y=2sin(2x),把“2x”作为一个整体,再根据正弦函数的单调增区间,求出x的范围,即是所求函数的增区间.【详解】,由2kπ≤2x2kπ得,kπx≤kπ(k∈z),∴函数的单调增区间是[kπ,kπ](k∈z),故选D.【点睛】本题考查了正弦函数的单调性应用,一般的做法是利用整体思想,根据正弦函数(余弦函数)的性质进行求解.4、C【解析】

过点且与点距离最大的直线满足:,根据两直线互相垂直,斜率的关系可以求出直线的斜率,写出点斜式方程,最后化成一般方程,选出正确的选项.【详解】因为过点且与点距离最大的直线满足:,所以有,而,所以直线方程为,故本题选C.【点睛】本题考查了直线与直线垂直时斜率的性质,考查了数学运算能力.5、C【解析】

根据等差数列的求和与通项性质求解即可.【详解】等差数列前n项的和为,故.故.故选:C【点睛】本题主要考查了等差数列通项与求和的性质运用,属于基础题.6、B【解析】

根据直线垂直公式得到答案.【详解】已知直线,与互相垂直或故答案选B【点睛】本题考查了直线垂直的关系,意在考查学生的计算能力.7、A【解析】

分别讨论和两种情况下,恒成立的条件,即可求得的取值范围.【详解】当时,不等式可化为,其恒成立当时,要满足关于的不等式任意恒成立,只需解得:.综上所述,的取值范围是.故选:A.【点睛】本题考查了含参数一元二次不等式恒成立问题,解题关键是掌握含有参数的不等式的求解,首先需要对二次项系数讨论,注意分类讨论思想的应用,属于基础题.8、C【解析】

根据特殊值排除A,B选项,根据单调性选出C,D选项中的正确选项.【详解】当时,,故A,B两个选项错误.由于,故,所以C选项正确,D选项错误.故本小题选C.【点睛】本小题主要考查三角函数值,考查对数函数和指数函数的单调性,属于基础题.9、C【解析】

利用正弦定理由acosA=bcosB,可得sinAcosA=sinBcosB,再利用二倍角的正弦即可判断△ABC的形状.【详解】在△ABC中,∵acosA=bcosB,∴由正弦定理得:sinAcosA=sinBcosB,即sin2A=sin2B,∴2A=2B或2A+2B=π,∴A=B或A+B=,∴△ABC的形状为等腰三角形或直角三角形.故选C.考点:三角形的形状判断.10、B【解析】

利用向量的数量积运算即可算出.【详解】解:,,又在上,故选:【点睛】本题主要考查了向量的基本运算的应用,向量的基本定理的应用及向量共线定理等知识的综合应用.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】

由等差数列的性质可得a7+a9+a11=3a9,而S17=17a9,故本题可解.【详解】∵a1+a17=2a9,∴S1717a9=170,∴a9=10,∴a7+a9+a11=3a9=1;故答案为:1.【点睛】本题考查了等差数列的前n项和公式与等差数列性质的综合应用,属于基础题.12、6.【解析】

根据题意可将问题转化为等比数列中,已知和,求解的问题;利用等比数列前项和公式可求得,利用求得结果.【详解】由题意可知,每层悬挂的红灯数成等比数列,设为设第层悬挂红灯数为,向下依次为且即从上往下数第二层有盏灯本题正确结果;【点睛】本题考查利用等比数列前项和求解基本量的问题,属于基础题.13、钝角三角形【解析】

由,结合正弦定理可得,,由余弦定理可得可判断的取值范围【详解】解:,由正弦定理可得,由余弦定理可得是钝角三角形故答案为钝角三角形.【点睛】本题主要考查了正弦定理、余弦定理的综合应用在三角形的形状判断中的应用,属于基础题14、【解析】

先利用求出,在利用裂项求和即可.【详解】解:当时,,当时,,综上,,,,故答案为:.【点睛】本题考查和的关系求通项公式,以及裂项求和,是基础题.15、【解析】

曲线即圆曲线的上半部分,因为圆是单位圆,所以,,,,联立曲线与直线方程,消元后根据韦达定理与直线方程代入即可求解.【详解】由消去得,则,由三角函数的定义得故.【点睛】本题主要考查三角函数的定义,直线与圆的应用.此题关键在于曲线的识别与三角函数定义的应用.16、5【解析】设一部门抽取的员工人数为x,则.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】试题分析:(1)利用平面向量基本定理可得.(2)利用题意可得,则的最大值为.试题解析:(1),而,∴.(2)∴当时,的最大值为.18、(1)﹒(2)时,最大车流量辆.【解析】

(1)根据题意,解不等式即可求得平均速度的范围.(2)将函数解析式变形,结合基本不等式即可求得最值,及取最值时的自变量值.【详解】(1)车流量(千辆/h)与汽车的平均速度之间的函数关系式为:.则,变形可得,解得,即汽车在平均速度应在内.(2)由,、变形可得,当且仅当,即时取等号,故当汽车的平均速度,车流量最大,最大车流量为千辆/h.【点睛】本题考查了一元二次不等式的解法,由基本不等式求最值,属于基础题.19、(1)(2)当点为时,直线与直线关于轴对称,详见解析【解析】

(1)设圆的方程为,由垂径定理求得弦长,再由弦长为可求得,从而得圆的方程;(2)假设存在定点,使得直线与直线关于轴对称,则,同时设,直线方程代入圆方程后用韦达定理得,即为,代入可求得,说明存在.【详解】(1)设圆的方程为:圆心到直线的距离根据垂径定理得,,解得,,故圆的方程为(2)假设存在定点,使得直线与直线关于轴对称,那么,设联立得:由.故存在,当点为时,直线与直线关于轴对称.【点睛】本题考查圆的标准方程,考查直线与圆的位置关系.在解决存在性命题时,一般都是假设存在,然后根据已知去推理求解.象本题定点问题,就是假设存在定点,用设而不求法推理求解,解出值,如不能解出值,说明不存在.20、(1);(2).【解析】

(1)由诱导公式变形即得;(2)同样用诱导公式化简后,利用平方关系求值.【详解】(1);(2),,又是第三象限角,∴,∴.【点睛】本题考查诱导公式,考查同角间的三角函数关系.在用平方关系示三角函数值时,要注意确定角的范围.21、(1)(2)证明见解析;(3)或【解析】

(1)利用椭圆的定义可知曲线为的椭圆,直接写出椭圆的方程.(2)设直线,设,联立直线方程与椭圆方程,通过韦达定理求解KOM,然后推出直线OM的斜率与的斜率的乘积为定值.(3)设直线方程是与椭圆方程联立,根据面积公式,代入根与系数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论