版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年黑龙江省哈尔滨市六校数学高一下期末经典试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在长方体中,,,则异面直线与所成角的余弦值为()A. B. C. D.2.函数的零点所在的一个区间是().A. B. C. D.3.设向量,且,则实数的值为()A. B. C. D.4.函数的图象是()A. B. C. D.5.已知与的夹角为,,,则()A. B. C. D.6.已知m,n表示两条不同直线,表示平面,下列说法正确的是()A.若则 B.若,,则C.若,,则 D.若,,则7.已知函数的零点是和(均为锐角),则()A. B. C. D.8.在正四棱柱中,,,则与所成角的余弦值为()A. B. C. D.9.定义运算:.若不等式的解集是空集,则实数的取值范围是()A. B.C. D.10.三棱锥则二面角的大小为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知与之间的一组数据,则与的线性回归方程必过点__________.12.求值:_____.13.函数的值域是________.14.四棱柱中,平面ABCD,平面ABCD是菱形,,,,E是BC的中点,则点C到平面的距离等于________.15.某班委会由4名男生与3名女生组成,现从中选出2人担任正副班长,其中至少有1名女生当选的概率是______16.函数的定义域为_____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列中,.(1)求证:是等比数列,求数列的通项公式;(2)已知:数列,满足①求数列的前项和;②记集合若集合中含有个元素,求实数的取值范围.18.已知点,,曲线任意一点满足.(1)求曲线的方程;(2)设点,问是否存在过定点的直线与曲线相交于不同两点,无论直线如何运动,轴都平分,若存在,求出点坐标,若不存在,请说明理由.19.求函数的单调递增区间.20.如图已知平面,,,,,,点,分别为,的中点.(1)求证://平面;(2)求直线与平面所成角的大小.21.如图,在以、、、、、为顶点的五面体中,面是等腰梯形,,面是矩形,平面平面,,.(1)求证:平面平面;(2)若三棱锥的体积为,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
连接,交于,取的中点,连接、,可以证明是异面直线与所成角,利用余弦定理可求其余弦值.【详解】连接,交于,取的中点,连接.由长方体可得四边形为矩形,所以为的中点,因为为的中点,所以,所以或其补角是异面直线与所成角.在直角三角形中,则,,所以.在直角三角形中,,在中,,故选C.【点睛】空间中的角的计算,可以建立空间直角坐标系把角的计算归结为向量的夹角的计算,也可以构建空间角,把角的计算归结平面图形中的角的计算.2、B【解析】
判断函数的单调性,利用f(﹣1)与f(1)函数值的大小,通过零点存在性定理判断即可【详解】函数f(x)=2x+3x是增函数,f(﹣1)=<1,f(1)=1+1=1>1,可得f(﹣1)f(1)<1.由零点存在性定理可知:函数f(x)=2x+3x的零点所在的一个区间(﹣1,1).故选:B.【点睛】本题考查零点存在性定理的应用,考查计算能力,注意函数的单调性的判断.3、D【解析】
根据向量垂直时数量积为0,列方程求出m的值.【详解】向量,(m+1,﹣m),当⊥时,•0,即﹣(m+1)﹣2m=0,解得m.故选D.【点睛】本题考查了平面向量的数量积的坐标运算,考查了向量垂直的条件转化,是基础题.4、D【解析】
求出分段函数的解析式,由此确定函数图象.【详解】由于,根据函数解析式可知,D选项符合.故选:D【点睛】本小题主要考查分段函数图象的判断,属于基础题.5、A【解析】
将等式两边平方,利用平面向量数量积的运算律和定义得出关于的二次方程,解出即可.【详解】将等式两边平方得,,即,整理得,,解得,故选:A.【点睛】本题考查平面向量模的计算,在计算向量模的时候,一般将向量模的等式两边平方,利用平面向量数量积的定义和运算律进行计算,考查运算求解能力,属于中等题.6、B【解析】试题分析:线面垂直,则有该直线和平面内所有的直线都垂直,故B正确.考点:空间点线面位置关系.7、B【解析】
将函数零点转化的解,利用韦达定理和差公式得到,得到答案.【详解】的零点是方程的解即均为锐角故答案为B【点睛】本题考查了函数零点,韦达定理,和差公式,意在考查学生的综合应用能力.8、A【解析】
连结,结合几何体的特征,直接求解与所成角的余弦值即可.【详解】如图所示:在正四棱柱中,=1,=2,连结,则与所成角就是中的,所以与所成角的余弦值为:==.故选A.【点睛】本题考查正四棱柱的性质,直线与直线所成角的求法,考查空间想象能力以及计算能力,属于基础题.9、B【解析】
根据定义可得的解集是空集,即恒成立,再对分类讨论可得结果.【详解】由题意得的解集是空集,即恒成立.当时,不等式即为,不等式恒成立;当时,若不等式恒成立,则即解得.综上可知:.故选:B【点睛】本题考查了二次不等式的恒成立问题,考查了分类讨论思想,属于基础题.10、B【解析】
P在底面的射影是斜边的中点,设AB中点为D过D作DE垂直AC,垂足为E,则∠PED即为二面角P﹣AC﹣B的平面角,在直角三角形PED中求出此角即可.【详解】因为AB=10,BC=8,CA=6所以底面为直角三角形又因为PA=PB=PC所以P在底面的射影为直角三角形ABC的外心,为AB中点.设AB中点为D过D作DE垂直AC,垂足为E,所以DE平行BC,且DEBC=4,所以∠PED即为二面角P﹣AC﹣B的平面角.因为PD为三角形PAB的中线,所以可算出PD=4所以tan∠PED所以∠PED=60°即二面角P﹣AC﹣B的大小为60°故答案为60°.【点睛】本题考查的知识点是二面角的平面角及求法,确定出二面角的平面角是解答本题的关键.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据线性回归方程一定过样本中心点,计算这组数据的样本中心点,求出和的平均数即可求解.【详解】由题意可知,与的线性回归方程必过样本中心点,,所以线性回归方程必过.故答案为:【点睛】本题是一道线性回归方程题目,需掌握线性回归方程必过样本中心点这一特征,属于基础题.12、【解析】
根据同角三角函数的基本关系:,以及反三角函数即可解决。【详解】由题意.故答案为:.【点睛】本题主要考查了同角三角函数的基本关系,同角角三角函数基本关系主要有:,.属于基础题。13、【解析】
求出函数在上的值域,根据原函数与反函数的关系即可求解.【详解】因为函数,当时是单调减函数当时,;当时,所以在上的值域为根据反函数的定义域就是原函数的值域可得函数的值域为故答案为:【点睛】本题求一个反三角函数的值域,着重考查了余弦函数的图像与性质和反函数的性质等知识,属于基础题.14、【解析】
利用等体法即可求解.【详解】如图,由ABCD是菱形,,,E是BC的中点,所以,又平面ABCD,所以平面ABCD,即,又,则平面,由平面,所以,所以,设点C到平面的距离为,由即,即,所以.故答案为:【点睛】本题考查了等体法求点到面的距离,同时考查了线面垂直的判定定理,属于基础题.15、【解析】试题分析:∵从7人中选2人共有C72=21种选法,从4个男生中选2人共有C42=6种选法∴没有女生的概率是=,∴至少有1名女生当选的概率1-=.考点:本题主要考查古典概型及其概率计算公式.点评:在使用古典概型的概率公式时,应该注意:(1)要判断该概率模型是不是古典概型;(2)要找出随机事件A包含的基本事件的个数和试验中基本事件的总数.16、【解析】函数的定义域为故答案为三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析,(2)①②【解析】
(1)计算得到:得证.(2)①计算的通项公式为,利用错位相减法得到.②将代入集合M,化简并分离参数得,确定数列的单调性,根据集合中含有个元素得到答案.【详解】(1),为等比数列,其中首项,公比为.所以,.(2)①数列的通项公式为①②①-②化简后得.②将代入得化简并分离参数得,设,则易知由于中含有个元素,所以实数要小于等于第5大的数,且比第6大的数大.,,综上所述.【点睛】本题考查了数列的证明,数列的通项公式,错位相减法,数列的单调性,综合性强计算量大,意在考查学生的计算能力和综合应用能力.18、(1);(2)【解析】
(1)设,再根据化简求解方程即可.(2)设过定点的直线方程为,根据轴平分可得.再联立直线与圆的方程,化简利用韦达定理求解中参数的关系,进而求得定点即可.【详解】(1)设,因为,故,即,整理可得.(2)当直线与轴垂直,且在圆内时,易得关于轴对称,故必有轴平分.当直线斜率存在时,设过定点的直线方程为.设.联立,.因为无论直线如何运动,轴都平分,故,即,所以,.所以代入韦达定理有,化简得.故,恒过定点.即.【点睛】本题主要考查了轨迹方程的求解方法以及联立直线与圆的方程,利用韦达定理代入题中所给的关系式,化简求直线中参数的关系求得定点的问题.属于难题.19、()【解析】
先化简函数得到,再利用复合函数单调性原则结合整体法求单调区间即可.【详解】,令,则,因为是的一次函数,且在定义域上单调递增,所以要求的单调递增区间,即求的单调递减区间,即(),∴(),即(),∴函数的单调递增区间为().【点睛】本题考查求复合型三角函数的单调区间,答题时注意,复合函数的单调性遵循“同增异减”法则.20、(1)见证明;(2)【解析】
(1)要证线面平行即证线线平行,本题连接A1B,(2)取中点,连接证明平面,再求出,得到.【详解】(1)如图,连接,在中,因为和分别是和的中点,所以.又因为平面,所以平面;取中点和中点,连接,,.因为和分别为和,所以,,故且,所以,且.又因为平面,所以平面,从而为直线与平面所成的角.在中,可得,所以.因为,,所以,,,所以,,又由,有.在中,可得;在中,,因此.所以直线与平面所成角为.【点睛】求线面角一般有两个方法:几何法做出线上一点到平面的高,求出高;或利用等体积法求高向量法.21、(1)证明见解析;(2).【解析】
(1)由面面垂直的性质
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年广东省建筑安全员-C证考试(专职安全员)题库及答案
- 2025贵州省建筑安全员-C证考试(专职安全员)题库附答案
- 2025山东省安全员知识题库及答案
- 2025河南省安全员-C证(专职安全员)考试题库
- 食品加工的原料和材料-课件
- 中医内科学-感冒
- 《教师节综合实践》课件
- 有机药化实验课件
- 《急腹症宝力道》课件
- 《运筹学》整数规划
- 《联合国教科文:学生人工智能能力框架》-中文版
- 高中生物必修一知识点总结(必修1)
- 《风力发电技术》课件-第三章 机组运行与维护
- 物料报废回收合同范本
- 科研机构成果转化困境与对策
- 选矿厂建设课件
- DB32T4065-2021建筑幕墙工程技术标准
- 中国超重肥胖医学营养治疗指南
- 现代营销学原理课件
- 《5G无线网络规划与优化》 课件 第1、2章 5G网络概述、5G关键技术
- 屈原【六幕话剧】郭沫若
评论
0/150
提交评论