湖南省邵东县第四中学2024届高一数学第二学期期末预测试题含解析_第1页
湖南省邵东县第四中学2024届高一数学第二学期期末预测试题含解析_第2页
湖南省邵东县第四中学2024届高一数学第二学期期末预测试题含解析_第3页
湖南省邵东县第四中学2024届高一数学第二学期期末预测试题含解析_第4页
湖南省邵东县第四中学2024届高一数学第二学期期末预测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省邵东县第四中学2024届高一数学第二学期期末预测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如果角的终边经过点,那么的值是()A. B. C. D.2.在正方体中,为棱的中点,则异面直线与所成角的正切值为A. B. C. D.3.设,,则下列不等式成立的是()A. B. C. D.4.函数的定义域为()A. B. C. D.5.在三棱锥中,面,则三棱锥的外接球表面积是()A. B. C. D.6.在正方体中,、分别是棱和的中点,为上底面的中心,则直线与所成的角为()A.30° B.45° C.60° D.90°7.与圆关于直线对称的圆的方程为()A. B.C. D.8.设甲、乙两地的距离为a(a>0),小王骑自行车以匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又以匀速从乙地返回到甲地用了30分钟,则小王从出发到返回原地所经过的路程y和其所用的时间x的函数图象为()A. B.C. D.9.某程序框图如图所示,若输出的结果为,则判断框内应填入的条件可以为()A. B. C. D.10.设数列是等差数列,是其前项和,且,,则下列结论中错误的是()A. B. C. D.与均为的最大值二、填空题:本大题共6小题,每小题5分,共30分。11.圆台两底面半径分别为2cm和5cm,母线长为cm,则它的轴截面的面积是________cm2.12.已知向量(1,2),(x,4),且∥,则_____.13.若,,,则M与N的大小关系为___________.14.已知,且,则的取值范围是____________.15.若无穷数列的所有项都是正数,且满足,则______.16.若直线与直线平行,则实数a的值是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.一汽车厂生产,,三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有类轿车10辆.轿车轿车轿车舒适型100150标准型300450600(1)求的值;(2)用分层抽样的方法在类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;(3)用随机抽样的方法从类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2把这8辆轿车的得分看作一个总体,从中任取一个得分数,

记这8辆轿车的得分的平均数为,定义事件,且函数没有零点,求事件发生的概率.18.若数列满足:对于,都有(为常数),则称数列是公差为的“隔项等差”数列.(Ⅰ)若,是公差为8的“隔项等差”数列,求的前项之和;(Ⅱ)设数列满足:,对于,都有.①求证:数列为“隔项等差”数列,并求其通项公式;②设数列的前项和为,试研究:是否存在实数,使得成等比数列()?若存在,请求出的值;若不存在,请说明理由.19.△ABC在内角A、B、C的对边分别为a,b,c,已知a=bcosC+csinB.(Ⅰ)求B;(Ⅱ)若b=2,求△ABC面积的最大值.20.已知函数,.(1)求解不等式;(2)若,求的最小值.21.五一放假期间高速公路免费是让实惠给老百姓,但也容易造成交通堵塞.在某高速公路上的某时间段内车流量(单位:千辆/小时)与汽车的平均速度(单位:千米/小时)之间满足的函数关系(为常数),当汽车的平均速度为千米/小时时,车流量为千辆/小时.(1)在该时间段内,当汽车的平均速度为多少时车流量达到最大值?(2)为保证在该时间段内车流量至少为千辆/小时,则汽车的平均速度应控制在什么范围内?

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

根据任意角的三角函数定义直接求解.【详解】因为角的终边经过点,所以,故选:D.【点睛】本题考查任意角的三角函数求值,属于基础题.2、C【解析】

利用正方体中,,将问题转化为求共面直线与所成角的正切值,在中进行计算即可.【详解】在正方体中,,所以异面直线与所成角为,设正方体边长为,则由为棱的中点,可得,所以,则.故选C.【点睛】求异面直线所成角主要有以下两种方法:(1)几何法:①平移两直线中的一条或两条,到一个平面中;②利用边角关系,找到(或构造)所求角所在的三角形;③求出三边或三边比例关系,用余弦定理求角;(2)向量法:①求两直线的方向向量;②求两向量夹角的余弦;③因为直线夹角为锐角,所以②对应的余弦取绝对值即为直线所成角的余弦值.3、D【解析】试题分析:本题是选择题,可采用逐一检验,利用特殊值法进行检验,很快问题得以解决.解:∵a>b,c>d;∴设a=1,b=-1,c=-2,d=-5,选项A,1-(-2)>-1-(-5),不成立;选项B,1(-2)>(-1)(-5),不成立;取选项C,,不成立,故选D考点:不等式的性质点评:本题主要考查了基本不等式,基本不等式在考纲中是C级要求,本题属于基础题4、A【解析】

根据对数函数的定义域直接求解即可.【详解】由题知函数,所以,所以函数的定义域是.故选:A.【点睛】本题考查了对数函数的定义域的求解,属于基础题.5、D【解析】

首先计算BD长为2,判断三角形BCD为直角三角形,将三棱锥还原为长方体,根据体对角线等于直径,计算得到答案.【详解】三棱锥中,面中:在中:即ABCD四点都在对应长方体上:体对角线为AD答案选D【点睛】本题考查了三棱锥的外接球表面积,将三棱锥放在对应的长方体里面是解题的关键.6、A【解析】

先通过平移将两条异面直线平移到同一个起点,得到的锐角或直角就是异面直线所成的角,在三角形中再利用余弦定理求出此角即可.【详解】解:先画出图形,将平移到,为直线与所成的角,设正方体的边长为,,,,,,故选:.【点睛】本题主要考查了异面直线及其所成的角,以及余弦定理的应用,属于基础题.7、A【解析】

设所求圆的圆心坐标为,列出方程组,求得圆心关于的对称点,即可求解所求圆的方程.【详解】由题意,圆的圆心坐标,设所求圆的圆心坐标为,则圆心关于的对称点,满足,解得,即所求圆的圆心坐标为,且半径与圆相等,所以所求圆的方程为,故选A.【点睛】本题主要考查了圆的方程的求解,其中解答中熟记圆的方程,以及准确求解点关于直线的对称点的坐标是解答的关键,着重考查了推理与运算能力,属于基础题.8、D【解析】试题分析:根据题意,甲、乙两地的距离为a(a>0),小王骑自行车以匀速从甲地到乙地用了20min,在乙地休息10min后,他又以匀速从乙地返回到甲地用了30min,那么可知先是匀速运动,图像为直线,然后再休息,路程不变,那么可知时间持续10min,那么最后还是同样的匀速运动,直线的斜率不变可知选D.考点:函数图像点评:主要是考查了路程与时间的函数图像的运用,属于基础题.9、D【解析】

由已知可得,该程序是利用循环结构计算输出变量S的值,模拟过程分别求出变量的变化情况可的结果.【详解】程序在运行过程中,判断框前的变量的值如下:k=1,S=1;k=2,S=4;k=3,S=11,k=4,S=26;此时应该结束循环体,并输出S的值为26,所以判断框应该填入条件为:故选D【点睛】本题主要考查了程序框图,属于基础题.10、C【解析】

根据等差数列的性质,结合,,分析出错误结论.【详解】由于,,所以,,,所以,与均为的最大值.而,所以,所以C选项结论错误.故选:C.【点睛】本小题主要考查等差数列的性质,考查分析与推理能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、63【解析】

首先画出轴截面,然后结合圆台的性质和轴截面整理计算即可求得最终结果.【详解】画出轴截面,如图,过A作AM⊥BC于M,则BM=5-2=3(cm),AM==9(cm),所以S四边形ABCD==63(cm2).【点睛】本题主要考查圆台的空间结构特征及相关元素的计算等知识,意在考查学生的转化能力和计算求解能力.12、.【解析】

根据求得,从而可得,再求得的坐标,利用向量模的公式,即可求解.【详解】由题意,向量,则,解得,所以,则,所以.【点睛】本题主要考查了向量平行关系的应用,以及向量的减法和向量的模的计算,其中解答中熟记向量的平行关系,以及向量的坐标运算是解答的关键,着重考查了推理与运算能力,属于基础题.13、【解析】

根据自变量的取值范围,利用作差法即可比较大小.【详解】,,,所以当时,所以,即,故答案为:.【点睛】本题考查了作差法比较整式的大小,属于基础题.14、【解析】

利用正弦函数的定义域求得值域,即的范围,再根据反余弦函数的定义可求得的取值范围.【详解】因为且,所以,则根据反余弦函数的定义可得,则的取值范围是.故答案为:【点睛】本题考查了正弦函数的定义域和值域,考查了反余弦函数的定义,属于基础题.15、【解析】

先由作差法求出数列的通项公式为,即可计算出,然后利用常用数列的极限即可计算出的值.【详解】当时,,可得;当时,由,可得,上式下式得,得,也适合,则,.所以,.因此,.故答案为:.【点睛】本题考查利用作差法求数列通项,同时也考查了数列极限的计算,考查计算能力,属于中等题.16、0【解析】

解方程即得解.【详解】因为直线与直线平行,所以,所以或.当时,两直线重合,所以舍去.当时,两直线平行,满足题意.故答案为:【点睛】本题主要考查两直线平行的性质,意在考查学生对这些知识的理解掌握水平,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)400;(2);(3)【解析】

(1)由分层抽样按比例可得;(2)把5个样本编号,用列举法列出任取2辆的所有基本事件,得出至少有1辆舒适型轿车的基本事件,计数后可得概率.(3)求出,确定事件所含的个数后可得概率.【详解】(1)由题意,解得;(2)C类产品中舒适型和标准型产品数量比为,因此5人样品中舒适型抽取了2辆,标准型抽取了3辆,编号为,任取2辆的基本事件有:共10个,其中至少有1辆舒适型轿车的基本事件有共7个,所求概率为.(3)由题意,满足的有共6个,函数没有零点,则,解得,再去掉,还有4个,∴所求概率为.【点睛】本题考查分层抽样,考查古典概型,解题关键是用列举法写出所有的基本事件.18、(Ⅰ)(Ⅱ)①当为偶数时,,当为奇数时,;②【解析】

试题分析:(Ⅰ)由新定义知:前项之和为两等差数列之和,一个是首项为3,公差为8的等差数列前8项和,另一个是首项为17,公差为8的等差数列前7项和,所以前项之和(Ⅱ)①根据新定义知:证明目标为,,相减得,当为奇数时,依次构成首项为a,公差为2的等差数列,,当为偶数时,依次构成首项为2-a,公差为2的等差数列,②先求和:当为偶数时,;当为奇数时,故当时,,,,由,则,解得.试题解析:(Ⅰ)易得数列前项之和(Ⅱ)①()(A)(B)(B)(A)得().所以,为公差为2的“隔项等差”数列.当为偶数时,,当为奇数时,;②当为偶数时,;当为奇数时,.故当时,,,,由,则,解得.所以存在实数,使得成等比数列()考点:新定义,等差数列通项及求和19、(Ⅰ)B=(Ⅱ)【解析】

(1)∵a=bcosC+csinB∴由正弦定理知sinA=sinBcosC+sinCsinB①在三角形ABC中,A=-(B+C)∴sinA=sin(B+C)=sinBcosC+cosBsinC②由①和②得sinBsinC=cosBsinC而C∈(0,),∴sinC≠0,∴sinB=cosB又B(0,),∴B=(2)S△ABCacsinBac,由已知及余弦定理得:4=a2+c2﹣2accos2ac﹣2ac,整理得:ac,当且仅当a=c时,等号成立,则△ABC面积的最大值为(2)1.20、(1)或(2)【解析】

(1)对x分类讨论解不等式得解;(2)由题得,再利用基本不等式求函数的最小值.【详解】解:(1)当时,,解得.当时,,解得.所以不等式解集为或.(2),当且仅

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论