




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年广东省兴宁一中高一下数学期末综合测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若集合A=α|α=π6+kπ,k∈ZA.ϕ B.π6 C.-π2.若,下列不等式一定成立的是()A. B. C. D.3.在复平面内,复数对应的点位于A.第一象限 B.第二象限 C.第三象限 D.第四象限4.已知为定义在上的函数,其图象关于轴对称,当时,有,且当时,,若方程()恰有5个不同的实数解,则的取值范围是()A. B. C. D.5.已知则的最小值是()A. B.4 C. D.56.设等比数列的前项和为,若,则()A. B.2 C. D.7.向量,,若,则()A.2 B. C. D.8.下列函数中,在区间上为增函数的是().A. B. C. D.9.在下列结论中,正确的为()A.两个有共同起点的单位向量,其终点必相同B.向量与向量的长度相等C.向量就是有向线段D.零向量是没有方向的10.将的图像怎样移动可得到的图象()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位二、填空题:本大题共6小题,每小题5分,共30分。11.若,则______.12.382与1337的最大公约数是__________.13.如图所示,分别以为圆心,在内作半径为2的三个扇形,在内任取一点,如果点落在这三个扇形内的概率为,那么图中阴影部分的面积是____________.14.设是公比为的等比数列,,令,若数列有连续四项在集合中,则=.15.在边长为2的正△ABC所在平面内,以A为圆心,为半径画弧,分别交AB,AC于D,E.若在△ABC内任丢一粒豆子,则豆子落在扇形ADE内的概率是________.16.某幼儿园对儿童记忆能力的量化评价值和识图能力的量化评价值进行统计分析,得到如下数据:468103568由表中数据,求得回归直线方程中的,则.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某公司为了解广告投入对销售收益的影响,在若干地区各投入4万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示),由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从0开始计数的.(1)根据频率分布直方图计算图中各小长方形的宽度;(2)试估计该公司在若干地区各投入4万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:广告投入(单位:万元)12345销售收益(单位:万元)2337由表中的数据显示,与之间存在着线性相关关系,请将(2)的结果填入空白栏,并求出关于的回归直线方程.(参考公式:)18.已知函数,若,且,,求满足条件的,.19.已知,设.(1)若图象中相邻两条对称轴间的距离不小于,求的取值范围;(2)若的最小正周期为,且当时,的最大值是,求的解析式,并说明如何由的图象变换得到的图象.20.设正项等比数列且的等差中项为.(1)求数列的通项公式;(2)若,数列的前n项为,数列满足,为数列的前项和,求.21.某校从高一(1)班和(2)班的某次数学考试的成绩中各随机抽取了6份数学成绩组成一个样本,如茎叶图所示(试卷满分为100分)(1)试计算这12份成绩的中位数;(2)用各班的样本方差比较两个班的数学学习水平,哪个班更稳定一些?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
先化简集合A,B,再求A∩B.【详解】由题得B={x|-1≤x≤3},A=⋯所以A∩B=π故选:B【点睛】本题主要考查一元二次不等式的解法和集合的交集运算,意在考查学生对这些知识的理解掌握水平,属于基础题,2、D【解析】
通过反例、作差法、不等式的性质可依次判断各个选项即可.【详解】若,,则,错误;,则,错误;,,则,错误;,则等价于,成立,正确.本题正确选项:【点睛】本题考查不等式的性质,属于基础题.3、D【解析】
利用复数的运算法则、几何意义即可得出.【详解】在复平面内,复数==1﹣i对应的点(1,﹣1)位于第四象限.故选D.【点睛】本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.4、C【解析】当时,有,所以,所以函数在上是周期为的函数,从而当时,,有,又,即,有易知为定义在上的偶函数,所以可作出函数的图象与直线有个不同的交点,所以,解得,故选C.点睛:本题主要考查了函数的奇偶性、周期性、对称性,函数与方程等知识的综合应用,着重考查了数形结合思想研究直线与函数图象的交点问题,解答时现讨论得到分段函数的解析式,然后做出函数的图象,将方程恰有5个不同的实数解转化为直线与函数的图象由5个不同的交点,由数形结合法列出不等式组是解答的关键.5、C【解析】
由题意结合均值不等式的结论即可求得的最小值,注意等号成立的条件.【详解】由题意可得:,当且仅当时等号成立.即的最小值是.故选:C.【点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.6、C【解析】
根据等比数列前项和为带入即可。【详解】当时,不成立。当时,则,选择C【点睛】本题主要考查了等比数列的前项和,,属于基础题。7、C【解析】试题分析:,,得得,故选C.考点:向量的垂直运算,向量的坐标运算.8、B【解析】试题分析:根据初等函数的图象,可得函数在区间(0,1)上的单调性,从而可得结论.解:由题意,A的底数大于0小于1、C是图象在一、三象限的单调减函数、D是余弦函数,,在(0,+∞)上不单调,B的底数大于1,在(0,+∞)上单调增,故在区间(0,1)上是增函数,故选B考点:函数的单调性点评:本题考查函数的单调性,掌握初等函数的图象与性质是关键.9、B【解析】
逐一分析选项,得到答案.【详解】A.单位向量的方向任意,所以当起点相同时,终点在以起点为圆心的单位圆上,终点不一定相同,所以选项不正确;B.向量与向量是相反向量,方向相反,长度相等,所以选项正确;C.向量是既有大小,又有方向的向量,可以用有向线段表示,但不能说向量就是有向线段,所以选项不正确;D.规定零向量的方向任意,而不是没有方向,所以选项不正确.故选B.【点睛】本题考查了向量的基本概念,属于基础题型.10、C【解析】
因为将向左平移个单位可以得到,得解.【详解】解:将向左平移个单位可以得到,故选C.【点睛】本题考查了函数图像的平移变换,属基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
,则,故答案为.12、191【解析】
利用辗转相除法,求382与1337的最大公约数.【详解】因为,,所以382与1337的最大公约数为191,故填:.【点睛】本题考查利用辗转相除法求两个正整数的最大公因数,属于容易题.13、【解析】
先求出三块扇形的面积,再由概率计算公式求出的面积,进而求出阴影部分的面积.【详解】∵,∴三块扇形的面积为:,设的面积为,∵在内任取一点,点落在这三个扇形内的概率为,,∴图中阴影部分的面积为:,故答案为:.【点睛】本题主要考查几何概型的应用,属于几何概型中的面积问题,难度不大.14、【解析】
考查等价转化能力和分析问题的能力,等比数列的通项,有连续四项在集合,四项成等比数列,公比为,=-9.15、【解析】
由三角形ABC的边长为2不难求出三角形ABC的面积,又由扇形的半径为,也可以求出扇形的面积,代入几何概型的计算公式即可求出答案.【详解】由题意知,在△ABC中,BC边上的高AO正好为,∴圆与边CB相切,如图.S扇形=×××=,S△ABC=×2×2×=,∴P==.【点睛】本题考查面积型几何概型概率的求法,属基础题.16、-0.1【解析】
分别求出和的均值,代入线性回归方程即可.【详解】由表中数据易得,,由在直线方程上,可得【点睛】此题考查线性回归方程形式,表示在回归直线上代入即可,属于简单题目.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)2;(2)5;(3)空白栏中填5,【解析】
(1)根据频率等于小长方形的面积以及频率和为,得到关于的等式,求解出即可;(2)根据各组数据的组中值与频率的乘积之和得到对应的销售收益的平均值;(3)先填写空白栏数据,然后根据所给数据计算出,即可求解出回归直线方程.【详解】(1)设各小长方形的宽度为.由频率分布直方图中各小长方形的面积总和为1,可知,解得.故图中各小长方形的宽度为2.(2)由(1)知各小组依次是,其中点分别为对应的频率分别为故可估计平均值为.(3)由(2)可知空白栏中填5.由题意可知,,,根据公式,可求得,.所以所求的回归直线方程为.【点睛】本题考查频率分布直方图的实际应用以及回归直线方程的求法,难度一般.(1)频率分布直方图中,小矩形的面积代表该组数据的频率,所有小矩形面积之和为;(2)求解回归直线方程时,先求解出,然后根据回归直线方程过样本点的中心再求解出.18、,【解析】
利用三角恒等变换,化简的解析式,从而得出结论.【详解】解:,∴,待定系数,可得,又,∴,∴,.【点睛】本题主要考查三角恒等变换,属于基础题.19、(1);(2);平移变换过程见解析.【解析】
(1)根据平面向量的坐标运算,表示出的解析式,结合辅助角公式化简三角函数式.结合相邻两条对称轴间的距离不小于及周期公式,即可求得的取值范围;(2)根据最小正周期,求得的值.代入解析式,结合正弦函数的图象、性质与的最大值是,即可求得的解析式.再根据三角函数图象平移变换,即可描述变换过程.【详解】∵∴∴(1)由题意可知,∴又,∴(2)∵,∴∴∵,∴∴当即时∴∴将图象上所有点向右平移个单位,得到的图象;再将得到的图象上所有点的横坐标变为原来的倍,纵坐标不变,得到的图象(或将图象上所有点的横坐标变为原来的倍,纵坐标不变,得到的图象;再将得到的图象上所有点向右平移个单位,得到的图象)【点睛】本题考查了正弦函数图像与性质的综合应用,根据最值求三角函数解析式,三角函数图象平移变换过程,属于中档题.20、(1);(2).【解析】
(1)利用已知条件列出方程,求出首项与公比,然后求解通项公式.(2)化简数列的通项公式,利用裂项相消法求解数列的和即可.【详解】(1)设等比数列的公比为,由题意,得,解得,所以.(2)由(1)得,∴,∴,∴.【点睛】本题考查数列的递推关系式以及数列求和,考查转化思想以及计算能力.21、(1)80;(2)(1)班.【解析】
(1)从茎叶图可直接得到答案;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年金融业数字化转型过程中的风险管理技术创新与应用研究
- 医学问题及答案面试题目
- 2025年教育游戏化在儿童手工制作教育中的应用与实践报告
- 文化产业发展引导资金2025年申请项目环境效益评估报告
- 2025年工业互联网平台云计算资源动态分配在智能电网中的创新应用报告
- 2025年基因检测技术在遗传性疾病诊断准确性关键技术研究报告
- 2025年医药企业研发外包(CRO)在临床试验监管政策变动下的影响报告
- 工业互联网平台2025年异构数据库融合技术在工业互联网平台商业模式中的应用
- 江苏省南通市2013年中考历史试题(含答案)
- 农业机械化智能化在农业资源节约与环境保护中的应用报告
- 真石漆饰面工程检验批质量验收记录
- 妇产科手术配合课件
- 地基强夯工程专项施工方案专家论证版
- (中职)中国税收:税费计算与申报项目十四 企业所得税计算与申报课件
- 心理照护教材课件汇总完整版ppt全套课件最全教学教程整本书电子教案全书教案课件合集
- 男朋友申请表
- 高中心理健康:我心换你心——心理主题:人际交往 课件(22张PPT)
- 高清元素周期表(专业版)
- 北京中考英语作文模板
- 订单运作与产品交付流程
- 暗黑破坏神2所有绿色套装(大图)
评论
0/150
提交评论