




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖南省双牌县重点中学初中数学毕业考试模拟冲刺卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(共10小题,每小题3分,共30分)1.下列运算结果正确的是()A.3a2-a2=2 B.a2·a3=a6 C.(-a2)3=-a6 D.a2÷a2=a2.下列调查中,最适合采用全面调查(普查)的是()A.对我市中学生每周课外阅读时间情况的调查B.对我市市民知晓“礼让行人”交通新规情况的调查C.对我市中学生观看电影《厉害了,我的国》情况的调查D.对我国首艘国产航母002型各零部件质量情况的调查3.计算:得()A.- B.- C.- D.4.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字-1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()A. B. C. D.5.若0<m<2,则关于x的一元二次方程﹣(x+m)(x+3m)=3mx+37根的情况是()A.无实数根B.有两个正根C.有两个根,且都大于﹣3mD.有两个根,其中一根大于﹣m6.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为(
)A.9人 B.10人 C.11人 D.12人7.方程的根是()A.x=2 B.x=0 C.x1=0,x2=-2 D.x1=0,x2=28.如图,Rt△ABC中,∠ACB=90°,AB=5,AC=4,CD⊥AB于D,则tan∠BCD的值为()A. B. C. D.9.人的大脑每天能记录大约8600万条信息,数据8600用科学记数法表示为()A.0.86×104 B.8.6×102 C.8.6×103 D.86×10210.甲、乙两位同学做中国结,已知甲每小时比乙少做6个,甲做30个所用的时间与乙做45个所用的时间相等,求甲每小时做中国结的个数.如果设甲每小时做x个,那么可列方程为()A.= B.=C.= D.=二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,在△ABC中,BA=BC=4,∠A=30°,D是AC上一动点,AC的长=_____;BD+DC的最小值是_____.12.因式分解:a2b-4ab+4b=______.13.在“三角尺拼角”实验中,小明同学把一副三角尺按如图所示的方式放置,则∠1=__________°.14.(11·湖州)如图,已知A、B是反比例函数(k>0,x<0)图象上的两点,BC∥x轴,交y轴于点C.动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C.过P作PM⊥x轴,PN⊥y轴,垂足分别为M、N.设四边形OMPN的面积为S,P点运动时间为t,则S关于t的函数图象大致为15.一组数据:1,2,a,4,5的平均数为3,则a=_____.16.如图,正比例函数y=kx(k>0)与反比例函数y=6x三、解答题(共8题,共72分)17.(8分)如图,AB、CD是⊙O的直径,DF、BE是弦,且DF=BE,求证:∠D=∠B.18.(8分)已知如图①Rt△ABC和Rt△EDC中,∠ACB=∠ECD=90°,A,C,D在同一条直线上,点M,N,F分别为AB,ED,AD的中点,∠B=∠EDC=45°,(1)求证MF=NF(2)当∠B=∠EDC=30°,A,C,D在同一条直线上或不在同一条直线上,如图②,图③这两种情况时,请猜想线段MF,NF之间的数量关系.(不必证明)19.(8分)如图,△ABC是⊙O的内接三角形,AB是⊙O的直径,OF⊥AB,交AC于点F,点E在AB的延长线上,射线EM经过点C,且∠ACE+∠AFO=180°.求证:EM是⊙O的切线;若∠A=∠E,BC=,求阴影部分的面积.(结果保留和根号).20.(8分)如图,四边形ABCD的顶点在⊙O上,BD是⊙O的直径,延长CD、BA交于点E,连接AC、BD交于点F,作AH⊥CE,垂足为点H,已知∠ADE=∠ACB.(1)求证:AH是⊙O的切线;(2)若OB=4,AC=6,求sin∠ACB的值;(3)若,求证:CD=DH.21.(8分)为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.22.(10分)海中有一个小岛P,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A测得小岛P在北偏东60°方向上,航行12海里到达B点,这时测得小岛P在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.23.(12分)如图,在平面直角坐标系中,抛物线的图象经过和两点,且与轴交于,直线是抛物线的对称轴,过点的直线与直线相交于点,且点在第一象限.(1)求该抛物线的解析式;(2)若直线和直线、轴围成的三角形面积为6,求此直线的解析式;(3)点在抛物线的对称轴上,与直线和轴都相切,求点的坐标.24.2013年6月,某中学结合广西中小学阅读素养评估活动,以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:在这次抽样调查中,一共调查了多少名学生?请把折线统计图(图1)补充完整;求出扇形统计图(图2)中,体育部分所对应的圆心角的度数;如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍的学生人数.
参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】选项A,3a2-a2=2a2;选项B,a2·a3=a5;选项C,(-a2)3=-a6;选项D,a2÷a2=1.正确的只有选项C,故选C.2、D【解析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.由此,对各选项进行辨析即可.【详解】A、对我市中学生每周课外阅读时间情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;B、对我市市民知晓“礼让行人”交通新规情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;C、对我市中学生观看电影《厉害了,我的国》情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;D、对我国首艘国产航母002型各零部件质量情况的调查,意义重大,应采用普查,故此选项正确;故选D.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3、B【解析】
同级运算从左向右依次计算,计算过程中注意正负符号的变化.【详解】-故选B.【点睛】本题考查的是有理数的混合运算,熟练掌握运算法则是解题的关键.4、C【解析】
列表得,
1
2
0
-1
1
(1,1)
(1,2)
(1,0)
(1,-1)
2
(2,1)
(2,2)
(2,0)
(2,-1)
0
(0,1)
(0,2)
(0,0)
(0,-1)
-1
(-1,1)
(-1,2)
(-1,0)
(-1,-1)
由表格可知,总共有16种结果,两个数都为正数的结果有4种,所以两个数都为正数的概率为,故选C.考点:用列表法(或树形图法)求概率.5、A【解析】
先整理为一般形式,用含m的式子表示出根的判别式△,再结合已知条件判断△的取值范围即可.【详解】方程整理为,△,∵,∴,∴△,∴方程没有实数根,故选A.【点睛】本题考查了一元二次方程根的判别式,当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.6、C【解析】
设参加酒会的人数为x人,根据每两人都只碰一次杯,如果一共碰杯55次,列出一元二次方程,解之即可得出答案.【详解】设参加酒会的人数为x人,依题可得:
x(x-1)=55,
化简得:x2-x-110=0,
解得:x1=11,x2=-10(舍去),
故答案为C.【点睛】考查了一元二次方程的应用,解题的关键是根据题中的等量关系列出方程.7、C【解析】试题解析:x(x+1)=0,
⇒x=0或x+1=0,
解得x1=0,x1=-1.
故选C.8、D【解析】
先求得∠A=∠BCD,然后根据锐角三角函数的概念求解即可.【详解】解:∵∠ACB=90°,AB=5,AC=4,∴BC=3,在Rt△ABC与Rt△BCD中,∠A+∠B=90°,∠BCD+∠B=90°.∴∠A=∠BCD.∴tan∠BCD=tanA==,故选D.【点睛】本题考查解直角三角形,三角函数值只与角的大小有关,因而求一个角的函数值,可以转化为求与它相等的其它角的三角函数值.9、C【解析】
科学记数法就是将一个数字表示成a×10的n次幂的形式,其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.【详解】数据8600用科学记数法表示为8.6×103故选C.【点睛】用科学记数法表示一个数的方法是(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).10、A【解析】
设甲每小时做x个,乙每小时做(x+6)个,根据甲做30个所用时间与乙做45个所用时间相等即可列方程.【详解】设甲每小时做x个,乙每小时做(x+6)个,根据甲做30个所用时间与乙做45个所用时间相等可得=.故选A.【点睛】本题考查了分式方程的应用,找到关键描述语,正确找出等量关系是解决问题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、(Ⅰ)AC=4(Ⅱ)4,2.【解析】
(Ⅰ)如图,过B作BE⊥AC于E,根据等腰三角形的性质和解直角三角形即可得到结论;(Ⅱ)如图,作BC的垂直平分线交AC于D,则BD=CD,此时BD+DC的值最小,解直角三角形即可得到结论.【详解】解:(Ⅰ)如图,过B作BE⊥AC于E,∵BA=BC=4,∴AE=CE,∵∠A=30°,∴AE=AB=2,∴AC=2AE=4;(Ⅱ)如图,作BC的垂直平分线交AC于D,则BD=CD,此时BD+DC的值最小,∵BF=CF=2,∴BD=CD==,∴BD+DC的最小值=2,故答案为:4,2.【点睛】本题考查了等腰三角形的性质,线段垂直平分线的性质,解直角三角形,正确的作出辅助线是解题的关键.12、【解析】
先提公因式b,然后再运用完全平方公式进行分解即可.【详解】a2b﹣4ab+4b=b(a2﹣4a+4)=b(a﹣2)2,故答案为b(a﹣2)2.【点睛】本题考查了利用提公因式法与公式法分解因式,熟练掌握完全平方公式的结构特征是解本题的关键.13、1【解析】试题分析:由三角形的外角的性质可知,∠1=90°+30°=1°,故答案为1.考点:三角形的外角性质;三角形内角和定理.14、A【解析】试题分析:①当点P在OA上运动时,OP=t,S=OM•PM=tcosα•tsinα,α角度固定,因此S是以y轴为对称轴的二次函数,开口向上;②当点P在AB上运动时,设P点坐标为(x,y),则S=xy=k,为定值,故B、D选项错误;③当点P在BC上运动时,S随t的增大而逐渐减小,故C选项错误.故选A.考点:1.反比例函数综合题;2.动点问题的函数图象.15、1【解析】依题意有:(1+2+a+4+5)÷5=1,解得a=1.故答案为1.16、1.【解析】
根据反比例函数的性质可判断点A与点B关于原点对称,则S△BOC=S△AOC,再利用反比例函数k的几何意义得到S△AOC=3,则易得S△ABC=1.【详解】∵双曲线y=6x∴点A与点B关于原点对称,∴S△BOC=S△AOC,∵S△AOC=12×1=3,∴S△ABC=2S△AOC故答案为1.三、解答题(共8题,共72分)17、证明见解析.【解析】
根据在同圆中等弦对的弧相等,AB、CD是⊙O的直径,则,由FD=EB,得,,由等量减去等量仍是等量得:,即,由等弧对的圆周角相等,得∠D=∠B.【详解】解:方法(一)证明:∵AB、CD是⊙O的直径,∴.∵FD=EB,∴.∴.即.∴∠D=∠B.方法(二)证明:如图,连接CF,AE.∵AB、CD是⊙O的直径,∴∠F=∠E=90°(直径所对的圆周角是直角).∵AB=CD,DF=BE,∴Rt△DFC≌Rt△BEA(HL).∴∠D=∠B.【点睛】本题利用了在同圆中等弦对的弧相等,等弧对的弦,圆周角相等,等量减去等量仍是等量求解.18、(1)见解析;(2)MF=NF.【解析】
(1)连接AE,BD,先证明△ACE和△BCD全等,然后得到AE=BD,然后再通过三角形中位线证明即可.(2)根据图(2)(3)进行合理猜想即可.【详解】解:(1)连接AE,BD在△ACE和△BCD中∴△ACE≌△BCD∴AE=BD又∵点M,N,F分别为AB,ED,AD的中点∴MF=BD,NF=AE∴MF=NF(2)MF=NF.方法同上.【点睛】本题考查了三角形全等的判定和性质以及三角形中位线的知识,做出辅助线和合理猜想是解答本题的关键.19、(1)详见解析;(2);【解析】
(1)连接OC,根据垂直的定义得到∠AOF=90°,根据三角形的内角和得到∠ACE=90°+∠A,根据等腰三角形的性质得到∠OCE=90°,得到OC⊥CE,于是得到结论;
(2)根据圆周角定理得到∠ACB=90°,推出∠ACO=∠BCE,得到△BOC是等边三角形,根据扇形和三角形的面积公式即可得到结论.【详解】:(1)连接OC,
∵OF⊥AB,
∴∠AOF=90°,
∴∠A+∠AFO+90°=180°,
∵∠ACE+∠AFO=180°,
∴∠ACE=90°+∠A,
∵OA=OC,
∴∠A=∠ACO,
∴∠ACE=90°+∠ACO=∠ACO+∠OCE,
∴∠OCE=90°,
∴OC⊥CE,
∴EM是⊙O的切线;
(2)∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠ACO+∠BCO=∠BCE+∠BCO=90°,
∴∠ACO=∠BCE,
∵∠A=∠E,
∴∠A=∠ACO=∠BCE=∠E,
∴∠ABC=∠BCO+∠E=2∠A,
∴∠A=30°,
∴∠BOC=60°,
∴△BOC是等边三角形,
∴OB=BC=,
∴阴影部分的面积=,【点睛】本题考查了切线的判定,等腰三角形的判定和性质,扇形的面积计算,连接OC是解题的关键.20、(1)证明见解析;(2);(3)证明见解析.【解析】
(1)连接OA,证明△DAB≌△DAE,得到AB=AE,得到OA是△BDE的中位线,根据三角形中位线定理、切线的判定定理证明;(2)利用正弦的定义计算;(3)证明△CDF∽△AOF,根据相似三角形的性质得到CD=CE,根据等腰三角形的性质证明.【详解】(1)证明:连接OA,由圆周角定理得,∠ACB=∠ADB,∵∠ADE=∠ACB,∴∠ADE=∠ADB,∵BD是直径,∴∠DAB=∠DAE=90°,在△DAB和△DAE中,,∴△DAB≌△DAE,∴AB=AE,又∵OB=OD,∴OA∥DE,又∵AH⊥DE,∴OA⊥AH,∴AH是⊙O的切线;(2)解:由(1)知,∠E=∠DBE,∠DBE=∠ACD,∴∠E=∠ACD,∴AE=AC=AB=1.在Rt△ABD中,AB=1,BD=8,∠ADE=∠ACB,∴sin∠ADB==,即sin∠ACB=;(3)证明:由(2)知,OA是△BDE的中位线,∴OA∥DE,OA=DE.∴△CDF∽△AOF,∴=,∴CD=OA=DE,即CD=CE,∵AC=AE,AH⊥CE,∴CH=HE=CE,∴CD=CH,∴CD=DH.【点睛】本题考查的是圆的知识的综合应用,掌握圆周角定理、相似三角形的判定定理和性质定理、三角形中位线定理是解题的关键.21、(1);(2).【解析】
(1)直接利用概率公式求解;(2)先画树状图展示所有12种等可能的结果数,再找出恰好小红抽中“唐诗”且小明抽中“宋词”的结果数,然后根据概率公式求解.【详解】(1)她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率=;(2)画树状图为:共有12种等可能的结果数,其中恰好小红抽中“唐诗”且小明抽中“宋词”的结果数为1,所以恰好小红抽中“唐诗”且小明抽中“宋词”的概率=.22、有触礁危险,理由见解析.【解析】试题分析:过点P作PD⊥AC于D,在Rt△PBD和Rt△PAD中,根据三角函数AD,BD就可以用PD表示出来,根据AB=12海里,就得到一个关于PD的方程,求得PD.从而可以判断如果渔船不改变航线继续向东航行,有没有触礁危险.试题解析:有触礁危险.理由:过点P作PD⊥AC于D.设PD为x,在Rt△PBD中,∠PBD=90°-45°=45°.∴BD=PD=x.在Rt△PAD中,∵∠PAD=90°-60°=30°∴AD=∵AD=AB+BD∴x=12+x∴x=∵6(+1)<18∴渔船不改变航线继续向东航行,有触礁危险.【点睛】本题主要考查解直角三角形在实际问题中的应用,构造直角三角形是解题的前提和关键.23、(1);(2);(3)或.【解析】
(1)根据图象经过M(1,0)和N(3,0)两点,且与y轴交于D(0,3),可利用待定系数法求出二次函数解析式;
(2)根据直线AB与抛物线的对称轴和x轴围成的三角形面积为6,得出AC,BC的长,得出B点的坐标,即可利用待定系数法求出一次函数解析式;
(3)利用三角形相似求出△ABC∽△PBF,即可求出圆的半径,即可得出P点的坐标.【详解】(1)抛物线的图
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 软件测试工程师的实习经验分享试题及答案
- 数据策略与业务发展的相互支持试题及答案
- 网络搭建与维护核心知识试题及答案
- 医用设备维修合同
- 文学作品风格和流派测试题
- 深入研究公路工程招投标的实务操作试题及答案
- 行政组织的沟通障碍及解决方案试题及答案
- 关于第二批保持共产党员先进性教育活动的
- 数据库管理基础知识试题及答案
- 计算机二级c语言机试题及答案
- 太原市万柏林区招聘社区专职人员考试真题2024
- 2024年杭州良渚文化城集团有限公司招聘真题
- 2025年教育管理与政策研究专业能力测试卷及答案
- 北京2025年国家艺术基金管理中心招聘应届毕业生笔试历年参考题库附带答案详解
- 2025年全国中级会计职称考试试卷及答案
- 安徽省部分高中2025届高考生物四模试卷含解析
- 2025-2030全球及中国燃气轮机服务行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 初中学生安全教育课件
- (市质检)莆田市2025届高中毕业班第四次教学质量检测政治试卷(含答案解析)
- 项目平行分包协议书范本
- 中国2型糖尿病防治指南(2020年版)
评论
0/150
提交评论