




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
苏教版初一下学期期末模拟数学检测试卷附解析(-)学校:__________姓名:__________班级:__________考号:__________一、选择题1.下列各式中,计算结果为a6的是()A.a2•a3 B.a3+a3 C.a12÷a2 D.(a2)32.如图,直线a,b被直线c所截,∠1的同旁内角是()A.∠2 B.∠3 C.∠4 D.∠53.下列四对数,是二元一次方程组的解的是()A. B. C. D.4.下列命题中:①直角都相等;②如果,那么;③内错角的角平分线互相平行;④是完全平方式.真命题的个数是()A.1个 B.2个 C.3个 D.4个5.若关于x的不等式组有解,则a的取值范围是()A. B. C. D.6.下列给出4个命题:①内错角相等;②对顶角相等;③对于任意实数,代数式总是正数;④若三条线段、、满足,则三条线段、、一定能组成三角形.其中正确命题的个数是()A.1个 B.2个 C.3个 D.4个7.一列数,其中为不小于2的整数,则()A. B.2 C. D.8.如图,∠E=∠F=90°,∠B=∠C,AE=AF,下列结论不正确的结论是()A.CD=DN; B.∠1=∠2; C.BE=CF; D.△ACN≌△ABM.二、填空题9.计算:2x2•5x3=___________.10.命题“三角形的三个内角中至少有两个锐角”是_____(填“真命题”或“假命题”).11.一个正多边形的内角和是外角和的2倍,其它的边数为______.12.已知,则______.13.已知是方程组的解,则=____________14.如图,点A是直线l外一点,AB⊥l,垂足是B,若C是直线l上任意一点,则一定有AB≤AC成立,理由是_________.15.若三角形的两边长分别为1cm、3cm,且第三边长为整数,则第三边长为____cm.16.如图,在△ABC中,已知点D是AB的中点,E、F分别为AC的三等分点,△ABC的面积为1,则△ANC的面积为______.三、解答题17.计算:(1)(2)(3)(4)18.分解因式:(1)(2)19.解方程组:(1);(2).20.定义:如果一元一次方程的解也是一元一次不等式组的解,则称该一元一次方程为该不等式组的“相伴方程”,例如:方程的解为,不等式组的解集为.因为,所以称方程为不等式组,的“相伴方程”.(1)下列方程是不等式组的“相伴方程”的是______;(填序号)①;②;③.(2)若关于的方程是不等式组的“相伴方程”,求的取值范围;(3)若方程,都是关于的不等式组的“相伴方程”,其中,求的取值范围.21.完成下面的证明:已知:如图,E是∠CDF平分线上一点,BEDF交CD于点N,ABCD.求证:∠ABE﹦2∠E.证明:∵BEDF,∴∠CNE=∠,()∠E=∠,()∵DE平分∠CDF.∴∠CDF=2∠EDF;∴∠CNE=2∠E.又∵ABCD,∴∠ABE=∠,∴∠ABE﹦2∠E.22.某小区准备新建个停车位,以解决小区停车难的问题.已知新建个地上停车位和个地下停车位共需万元:新建个地上停车位和个地下停车位共需万元,(1)该小区新建个地上停车位和个地下停车位各需多少万元?(2)若该小区新建车位的投资金额超过万元而不超过万元,问共有几种建造方案?(3)对(2)中的几种建造方案中,哪种方案的投资最少?并求出最少投资金额.23.为进一步提升我市城市品质、完善历史文化街区功能布局,市政府决定实施老旧城区改造提升项目.振兴渣土运输公司承包了某标段的土方运输任务,拟派出大、小两种型号的渣土运输车运输土方.已知3辆大型渣土运输车与4辆小型渣土运输车一次共运输土方44吨,4辆大型渣土运输车与6辆小型渣土运输车一次共运输土方62吨.(1)一辆大型渣土运输车和一辆小型渣土运输车一次各运输土方多少吨?(2)该渣土运输公司决定派出大、小两种型号渣土运输车共12辆参与运输工作,若每次运输土方总量不小于78吨,且小型渣土运输车至少派出4辆,则有哪几种派车方案?请通过计算后列出所有派车方案.24.如图,在中,是高,是角平分线,,.()求、和的度数.()若图形发生了变化,已知的两个角度数改为:当,,则__________.当,时,则__________.当,时,则__________.当,时,则__________.()若和的度数改为用字母和来表示,你能找到与和之间的关系吗?请直接写出你发现的结论.25.如图①,平分,⊥,∠B=450,∠C=730.(1)求的度数;(2)如图②,若把“⊥”变成“点F在DA的延长线上,”,其它条件不变,求的度数;(3)如图③,若把“⊥”变成“平分”,其它条件不变,的大小是否变化,并请说明理由.【参考答案】一、选择题1.D解析:D【分析】分别根据同底数幂的乘法法则,合并同类项法则,同底数幂的除法法则以及幂的乘方运算法则逐一判断即可.【详解】解:A、a2•a3=a5,故本选项不合题意;B、a3+a3=2a3,故本选项不合题意;C、a12÷a2=a10,故本选项不合题意;D、(a2)3=a6,故本选项符合题意;故选:D.【点睛】本题考查了合并同类项,同底数幂的乘除法以及幂的乘方,熟记相关运算法则是解答本题的关键.2.A解析:A【分析】根据同旁内角的定义:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角进行求解.【详解】解:直线a,b被直线c所截,∠1的同旁内角是∠2,故选:A.【点睛】本题考查了同旁内角的定义,能熟记同旁内角的定义的内容是解此题的关键,注意数形结合.3.B解析:B【分析】利用加减消元法求解即可.【详解】解:,①+②得2x=2,解得x=1,把x=1代入①得1+y=3,解得y=2,∴方程组的解为,故选:B.【点睛】本题考查了解二元一次方程组,解题关键是熟练掌握解二元一次方程组的方法.4.A解析:A【分析】根据直角的性质、平行线的判定、不等式的性质和完全平方式判断即可.【详解】解:①直角都相等,是真命题;②如果n<1,当n=-2时,那么n2-1>0,原命题是假命题;③相等的内错角的角平分线互相平行,原命题是假命题;④a2-6a+9是完全平方式,原命题是假命题;故选:A.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.5.D解析:D【分析】根据不等式组有解,可以得到关于a的不等式,从而可以求得a的取值范围.【详解】解:由不等式组可得,∵不等式组有解,∴>-1,解得a>-2,故选:D.【点睛】本题考查解一元一次不等式组,解答本题的关键是明确解一元一次不等式组的方法.6.B解析:B【解析】①两直线平行,内错角相等,故错误;②对顶角相等,正确;③对于任意实数x,代数式=(x−3)2+1总是正数,正确;④若三条线段a、b、c满足a+b>c,则三条线段a、b、c一定能组成三角形,错误,故选B.点睛:本题考查了命题与定理的知识,解题的关键是利用平行线的性质、对顶角的性质、三角形的三边关系等知识分别判断后即可确定正确的选项.注意:要说明一个没命题的正确性,一般需要推理、论证,二判断一个命题是假命题,只需举出一个范例即可.7.B解析:B【分析】由题意易得,,,…..;由此可得规律为按照三个一循环进行下去,因此问题可求解.【详解】解:由为不小于2的整数可得:,,,…..;∴该列数的规律为按照三个一循环排列下去,∴,∴2;故选B.【点睛】本题主要考查数字规律,关键是由题意得到数字的一般规律,进而问题可求解.8.A解析:A【分析】利用“角角边”证明△ABE和△ACF全等,根据全等三角形对应角相等可得∠BAE=∠CAF,然后求出∠1=∠2,全等三角形对应边相等可得BE=CF,AB=AC,再利用“角边角”证明△ACN和△ABM全等.【详解】在△ABE和△ACF中,,∴△ABE≌△ACF(AAS),∴∠BAE=∠CAF,BE=CF,AB=AC,故C选项结论正确;∴∠BAE-∠BAC=∠CAF-∠BAC,即∠1=∠2,故B选项结论正确;在△ACN和△ABM中,,∴△ACN≌△ABM(ASA),故D选项结论正确;CD与DN的大小无法确定,故A选项结论错误.故选A.【点睛】考查了全等三角形的判定与性质,熟记三角形全等的判定方法并准确识图,理清图中各角度之间的关系是解题的关键.二、填空题9.10x5【分析】单项式乘以单项式,就是把系数与系数相乘,同底数幂相乘.【详解】解:.故答案为:.【点睛】本题考查了单项式乘单项式的法则.熟悉运算法则是解题的关键.10.真命题【分析】根据三角形内角和为180°进行判断即可.【详解】∵三角形内角和为180°,∴三角形的三个内角中至少有两个锐角,是真命题;故答案为真命题.【点睛】本题考查命题与定理.判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.11.6【分析】设这个正多边的每一个外角为x°,则每一个内角为2x°,根据内角和外角互补可得x+2x=180,解可得x的值,再利用外角和360°÷外角度数可得边数.【详解】解:设这个正多边的每一个外角为x°,由题意得:x+2x=180,解得:x=60,360°÷60°=6.故答案为6.【点睛】此题主要考查了多边形的内角和外角,关键是计算出外角的度数,进而得到边数.12.1【分析】利用平方差公式分解因式,将x-2y=1代入,去括号合并即可得到结果.【详解】解:∵x-2y=1,∴x2-4y-4y2=(x+2y)(x-2y)-4y=x+2y-4y=x-2y=1.故答案为:1.【点睛】此题考查了因式分解的应用,熟练掌握平方差公式是解本题的关键.13.【分析】把代入到方程组中得到关于的方程组,求出的值,再求出的值即可.【详解】解:∵是方程组的解,∴,解得:,∴,故答案为:.【点睛】本难主要考查了二元一次方程组的解,解二元一次方程组和求代数式的值,明白解的定义和正确求出的值是解决此题的关键.14.A解析:垂线段最短【分析】根据垂线段最短的定义:从直线l外一点P向直线l作垂线,
垂足记为O,则线段PO叫做点P到直线l的垂线段,直线外一点与直线上各点连接的所有线段中,垂线段最短,即可得到答案.【详解】解:∵AB⊥直线l,∴AB的长即为点A到直线l的距离,∵直线外的点到直线的所有线段中,垂线段最短,∴AB≤AC的理由是垂线段最短.故答案为:垂线段最短.【点睛】本题主要考查了垂线段最短的问题,解题的关键在于能够熟练掌握垂线段最短的定义.15.3【分析】根据三角形三边长的关系,先求出第三边长的范围,结合第三边长是整数,即可求解.【详解】∵三角形的两边长分别为1cm、3cm,∴3-1<第三边长<1+3,即:2<第三边长<4,∵第解析:3【分析】根据三角形三边长的关系,先求出第三边长的范围,结合第三边长是整数,即可求解.【详解】∵三角形的两边长分别为1cm、3cm,∴3-1<第三边长<1+3,即:2<第三边长<4,∵第三边长为整数,∴第三边长为:3cm.故答案是:3.【点睛】本题主要考查三角形三边长的关系,熟练掌握三角形中,两边之差<第三边<两边之和,是解题的关键.16.【分析】设,,根据点D是边AB的中点,点E、F是边AC的三等分点,又因为△ABC的面积为1,利用面积关系列方程组即可求解.【详解】设,,∵,,,则有,解得:,,故答案为:.【点睛解析:【分析】设,,根据点D是边AB的中点,点E、F是边AC的三等分点,又因为△ABC的面积为1,利用面积关系列方程组即可求解.【详解】设,,∵,,,则有,解得:,,故答案为:.【点睛】本题主要考查了三角形面积与底的关系以及二元一次方程组的应用,关键利用等底等高的三角形面积相等的性质解题.三、解答题17.(1)-18;(2);(3);(4)【解析】【分析】(1)原式第一项利用零指数幂法则计算,第二项利用负指数幂法则计算,第三项利用平方计算,即可得到结果;(2)原式第一项利用幂的乘方计算法则计解析:(1)-18;(2);(3);(4)【解析】【分析】(1)原式第一项利用零指数幂法则计算,第二项利用负指数幂法则计算,第三项利用平方计算,即可得到结果;(2)原式第一项利用幂的乘方计算法则计算,第二项利用同底数幂的乘法法则计算,最后一项利用同底数幂的除法运算法则计算,合并后即可得到结果;(3)原式利用平方差公式化简,再利用完全平方公式展开,即可得到结果;(4)原式利用积的乘方的逆运算,平方差公式,完全平方公式,即可得到结果.【详解】解:(1)原式;(2)原式;(3)原式,,;(4)原式,.故答案为(1)-18;(2);(3);(4)【点睛】本题考查整式的混合运算,以及实数的运算,涉及的知识有:完全平方公式,平方差公式,零指数幂,负整数指数幂,以及合并同类项法则,熟练掌握公式及法则是解题的关键.18.(1);(2)【分析】(1)先提公因式法,再用公式法分解因式即可;(2)直接用公式法分解因式即可【详解】(1)(2)【点睛】本题考查了提公因式法分解因式,公式法分解因式,熟练公式解析:(1);(2)【分析】(1)先提公因式法,再用公式法分解因式即可;(2)直接用公式法分解因式即可【详解】(1)(2)【点睛】本题考查了提公因式法分解因式,公式法分解因式,熟练公式是解题的关键.19.(1);(2)【分析】(1)应用代入消元法,求出方程组的解是多少即可.(2)应用加减消元法,求出方程组的解是多少即可.【详解】解:(1),①代入②,可得:,解得,把代入①,解得,原解析:(1);(2)【分析】(1)应用代入消元法,求出方程组的解是多少即可.(2)应用加减消元法,求出方程组的解是多少即可.【详解】解:(1),①代入②,可得:,解得,把代入①,解得,原方程组的解是.(2),①②,可得,解得,把代入①,解得,原方程组的解是.【点睛】此题主要考查了解二元一次方程组的方法,要熟练掌握,注意代入消元法和加减消元法的应用.20.(1)①②;(2)取值范围为;(3)的取值范围为.【分析】(1)先求出不等式和每个方程的解,然后根据“相伴方程”的定义进行判断即可;(2)先求出不等式的解集,然后把k当做常数,求出方程的解,然解析:(1)①②;(2)取值范围为;(3)的取值范围为.【分析】(1)先求出不等式和每个方程的解,然后根据“相伴方程”的定义进行判断即可;(2)先求出不等式的解集,然后把k当做常数,求出方程的解,然后代入不等式组的解集中求解即可;(3)分别求出方程的解和不等式组的解集,然后根据“相伴方程”的定义求解即可.【详解】解:(1)解不等式,得,∴不等式的解集为,解方程①得;解方程②得解方程③得∴“相伴方程”是①②;(2)∵不等式组为解得,∵方程为,解得,根据题意可得,,解得:,故取值范围为.(3)∵方程为,,解得:,.∵不等式组为当时,不等式组为此时不等式组解集为,不符合题意,舍;当时,不等式组解集为,∴根据题意可得解得,故的取值范围为.【点睛】本题主要考查了解一元一次方程和一元一次不等式组,解题的关键在于能够熟练掌握相关知识进行求解.21.CDF;两直线平行,同位角相等;EDF;两直线平行,内错角相等;CNE.【分析】由BE∥DF,得到,由AB∥CD,得到结合角平分线的性质即可解答.【详解】证明:∵BE∥DF,∴CDF(解析:CDF;两直线平行,同位角相等;EDF;两直线平行,内错角相等;CNE.【分析】由BE∥DF,得到,由AB∥CD,得到结合角平分线的性质即可解答.【详解】证明:∵BE∥DF,∴CDF(两直线平行,同位角相等),∠E=∠EDF(两直线平行,内错角相等),∵平分,∴EDF;∴又∵AB∥CD∴CNE.故填:CDF;两直线平行,同位角相等;EDF;两直线平行,内错角相等;CNE.【点睛】本题考查的是平行线的性质、角平分线的定义,灵活运用平行线的性质是解答本题的关键.22.(1)新建一个地上停车位需0.1万元,新建一个地下停车位需0.5万元;(2)一共2种建造方案;(3)当地上建39个车位地下建21个车位投资最少,金额为14.4万元.【分析】(1)设新建一个地上停解析:(1)新建一个地上停车位需0.1万元,新建一个地下停车位需0.5万元;(2)一共2种建造方案;(3)当地上建39个车位地下建21个车位投资最少,金额为14.4万元.【分析】(1)设新建一个地上停车位需x万元,新建一个地下停车位需y万元,根据等量关系可列出方程组,解出即可得出答案.(2)设新建地上停车位m个,则地下停车位(60-m)个,根据投资金额超过14万元而不超过15万元,可得出不等式组,解出即可得出答案.(3)将m=38和m=39分别求得投资金额,然后比较大小即可得到答案.【详解】解:(1)设新建一个地上停车位需万元,新建一个地下停车位需万元,由题意得:,解得,故新建一个地上停车位需万元,新建一个地下停车位需万元.(2)设新建个地上停车位,由题意得:,解得,因为为整数,所以或,对应的或,故一共种建造方案.(3)当时,投资(万元),当时,投资(万元),故当地上建个车位地下建个车位投资最少,金额为万元.【点睛】本题考查了一元一次不等式组及二元一次方程组的应用,解答本题的关键是仔细审题,将实际问题转化为数学方程或不等式的思想进行求解,有一定难度.23.(1)一辆大型渣土运输车一次运输土方8吨,一辆小型渣土运输车一次运输土方5吨;(2)有三个方案:方案一:派出大型渣土运输车6辆,则派出小型渣土运输车6辆;方案二:派出大型渣土运输车7辆,则派出小型解析:(1)一辆大型渣土运输车一次运输土方8吨,一辆小型渣土运输车一次运输土方5吨;(2)有三个方案:方案一:派出大型渣土运输车6辆,则派出小型渣土运输车6辆;方案二:派出大型渣土运输车7辆,则派出小型渣土运输车5辆;方案三:派出大型渣土运输车8辆,则派出小型渣土运输车4辆【分析】(1)设一辆大型渣土运输车一次运输土方x吨,一辆小型渣土运输车一次运输土方y吨,根据“3辆大型渣土运输车与4辆小型渣土运输车一次共运输土方44吨,4辆大型渣土运输车与6辆小型渣土运输车一次共运输土方62吨”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设渣土运输公司派出大型渣土运输车m辆,则派出小型渣土运输车(12-m)辆,根据“每次运输土方总量不小于78吨,且小型渣土运输车至少派出4辆”,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为正整数,即可得出各派车方案.【详解】解(1)设一辆大型渣土运输车一次运输土方x吨,一辆小型渣土运输车一次运输土方y吨,根据题意得:,解得,答:一辆大型渣土运输车一次运输土方8吨,一辆小型渣土运输车一次运输土方5吨;(2)设渣土运输公司派出大型渣土运输车m辆,则派出小型渣土运输车(12-m)辆,根据题意得:,解得:,∵m为正整数,∴m=6,7,8.因此有三个方案,方案一:派出大型渣土运输车6辆,则派出小型渣土运输车6辆;方案二:派出大型渣土运输车7辆,则派出小型渣土运输车5辆;方案三:派出大型渣土运输车8辆,则派出小型渣土运输车4辆.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.24.(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)当时,;当时,.【分析】(1)先利用三角形内角和定理求出的度数,再根据角平分线和高的性质分别得出和的度数,进而可求和的度数;解析:(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)当时,;当时,.【分析】(1)先利用三角形内角和定理求出的度数,再根据角平分线和高的性质分别得出和的度数,进而可求和的度数;(2)先利用三角形内角和定理求出的度数,再根据角平分线和高的性质分别得出和的度数,则前三问利用即可得出答案,第4问利用即可得出答案;(3)按照(2)的方法,将相应的数换成字母即可得出答案.【详解】(1)∵,,∴.∵平分,∴.∵是高,,,,.(2)当,时,∵,,∴.∵平分,∴.∵是高
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年土木工程生产实习报告【5】
- 设备融资投资立项项目可行性研究报告(2025咨询)
- 园林公司租借合同协议书
- 解除农民工合同协议书
- 心理咨询室创业计划书时
- 2025年天猫养车项目大数据研究报告
- 明星演唱会活动策划方案(多)
- 咖啡店商业计划书2
- syb美容创业计划书参考范文
- 健康探秘课件
- GB/T 3733.1-1983卡套式端直通管接头
- GB/T 1689-1998硫化橡胶耐磨性能的测定(用阿克隆磨耗机)
- 病原微生物实验室生物安全管理手册
- 上消化道出血病人的观察与护理-课件
- 光缆测试报告
- 初中物理教育科学八年级下册第十一章 机械与功《功》教学设计
- 神经病学人卫版习题集题库
- 入网安评基线核查常用检查项
- (统编版小学语文教师)语文新课标新旧对比变化
- 达希纳(尼洛替尼)毒副反应及处理
- 【图文】SEW变频器设置参数说明
评论
0/150
提交评论