版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
BasedOnTheFiniteElementAnalysisOfSingleGirderCraneOptimizationDesignSummaryUseANSYS9.0analysissinglegirdercranesteelstructureofthemechanicalcharacteristics,andcombininganalysisresultsluopracticalexperienceputsforwardcorrespondingstructureoptimizationscheme,thecorrectnessandrationalityverified,andoptimaldesignforthesimilarproductreference.Keyword:bridgecranes;Steelstructure;Optimizationdesign;FEMItisusedwidelyinmachinemanufacture,metallurgy,steel,wharfbridgecranewithChinaaccountsforabout40%ofthecrane.Theoriginalcranedesignmethodformoretraditionaldesignmethods,designtheefficiencyislow,thedesigncranesafetyfactorisbig,consumemorethanrawmaterial,structureisnotrational.Tobeonthesteelstructureoptimizationdesign.Usuallytheoptimizationdesignisusingmathematicalprogrammingmethod,mechanicalengineeringdesignproblemswillbetransformedbycorrespondenceandtargetconstraintconditionsdescriptionlimitoptimizationproblem.Themethodforsolvingtheproblemoftheoptimizationofthetypicalcangetbetteroptimizationresults,butforengineeringpracticeoftenappearmultipletargets,theconstraintconditionsoptimizationproblemthereisdifficulttoestablishmathematicalmodelandcalculationcomplex,difficulttoapplication.Inviewofthis,thispaperusingfiniteelementanalysissoftwareforpossiblestructuredesignschemeofrapidvirtualtest,andthroughtheanalysisoftheresultsofthetestsofvirtualFEM,andmakesthecorrespondingstructureoptimization.WithLXtypesinglegirdercraneLordLiangGangstructureasanexample,theuseofANSYSsimulationintheworstconditionofthestressdistributionanddeformationcondition,theauthorputsforwardtheoptimalschemeandtest.1.TheLXtype5telectricsuspensionsinglegirdercranesteelstructurecharacteristicsLXtype5telectricsuspensionsinglegirdercranegirderandtwobythebeam,theelectrichoist,duringoperationmechanism,andelectricequipmentandothermajorparts.WheelgrouphangsupsidedownintheworkshoptheHofrailoperation.ThecentralbeamI32agirderbypaperboxbeamandwelded;BothendsofI32arangebythecantileverandchannelsteel[28awelded;thetworootchannelsteelbeamby[18andweldedsteelboxgirder,throughthebeamtwolugrealizationandtheconnectionofthegirders,asshowninfigure1.2.Finiteelementmodelingandanalysismethod2.1unitsoftheselectionandgridpartitionLXtype5telectricsuspensionsinglegirdercranesteelintherange,channelsteelboxgirderandthemaindimensionsareofitsthickness10timesabove,theselectedshellelement(shall63)inthebridgecranesfiniteelementanalysis[1].Inaddition,chooseshellelementmodeloptimizationformodification.2.2determinedthebadworkingenvironmentTherelatedtheoryshowsthat:thesmallcarinthemidspanandbrake,cartrailconnectionandbrakeways;Thecarislocatedinlimitpositionofthecantileverbeamandbrake,cartrailconnectionandwaysfortheworstdeflectionhappenedin2working[2].Theformerusedtodeterminethelargestcomprehensivestressacrossthemaingirderandmaximumdeflection;Thelatterareusedtodeterminethemainsupportsectionattheendofthemaximumshearstress.2.3sureloadingprojectandconstraintmodeTheabovetwokindsofconditionandtheLordLiangGangstructurecharacteristicscanbesureloadingprojectasisshownintable1.Mainarmsoutstretchedissimplysupportedbeammodel,theverticalandhorizontalload,shouldpinendprotectionX,Y,Zdirectionofmovement,theotherendconstraintfulcrumXandYdirectionsofdisplacement.3.BeforeoptimizationstructureanalysisTheabove2byusingANSYSworkconditionsafterloadingsolution,theresult(seefigure2,figure3.Figure2fortheoperationconditionofthemaingirdercomprehensivestressdistributionunderacloud.Examinethestressdistributioninthecloud,itisknownthatthemainDiaoZhuangKonglugaroundregionalstressvalueishigher,andinDiaoZhuangKongfaceappearedbiggestcomprehensivestress171.778MPa.Centralmainstressonly48.851~93.7MPa.BoxbeamendsrightAngleandacuteAngletransitionweldseamsstressfor117.127~140.548MPa.Figure3forthedeflectionofthemaingirder,theverticaldirectionmaximumdisplacement20.766mm,horizontaldirectionthemaximaldisplacementof7.398mm,themaximaldisplacementoccurredincentralmaingirder.4structureoptimizationscheme4.1thebasisfortheproposedschemeTheaboveanalysisresultshowsthatthesinglegirdercranestrengthandstiffnessreserveenough,thisisbecausethedesignmethodofsafetywithbias,thecalculationoftheselectionthebiggercoefficient.Consideringthemainbearingpartistherange,innofulldiscussionofthecircumstanceschangemodelsmallerhungrymustexistrangeuncertainty.So,thisisamainsteelbeamfromtheboxbeam,withapreliminarydiscussionoptimizationboxbeamofsteelplategirderthicknessofstrengthandrigidityinfluence.4.2theimplementationoftheprogrammeBoxgirderbeamsintofluctuationtwoparts,upsidedownintotheu-shapedbox,for6mmofthicknessisweldedsteelplate;ThelowerintothebodyandtheVhorizontalclapboardandstrengthenthefloors,thicknessof5mm.Nowaboxbeamsteelplatethicknessdecreases1mm,observetheanalysisresultswhethermeettheintensityandrigidityrequirements.Becauseofthispaperhavetheshellfiniteelementmodelunit(shell63)toanalyzetheboxgirderssoonlyneedtomodifythecorrespondingboardthickrealconstantsolutionagain,canconvenientinvestigationafteroptimizationofmechanicalpropertiesofmaingirder.4.3theoptimizationresultsanalysisFigure4foroptimizationofmaingirderaftercomprehensivestressdistributionmapdisplaystheshow,thelargestcomprehensivestressfor17.958MPa,accordwiththerequiredstrength,thelargestcomprehensivestressoccursinthemainDiaoZhuangKonglugaroundminingface.Evaluatethecomprehensivestressdistribution,exceptthemainDiaoZhuangKonglugaroundthestressofstressconcentrationinthenumericalrelativelyhigh,middlegirderstressfor58.989~117.974MPa.BoxbeamendsrightAngleandacuteAngletransitionweldseamsstressfor154.296~180.011MPa,considercommonlyafterweldingofsteelplatesshouldbeburnish,weldseamsroundintransition,andfiniteelementanalysismodelforthisroundthesimplified,causelocalstressconcentration,wherethestressvaluethantheactualvalueshouldbehigh[3].Figure5fortheoptimizationofmaingirderafterdeformation,theverticaldirectionthemaximaldisplacementof23.095mm,horizontaldirectionthemaximaldisplacementof8.770mm,accordwiththerigidityrequirement,themaximaldisplacementoccurredincentralmaingirder.Maingirderstructureoptimizationandcontrasttable2.Throughtheaboveisknown,optimizethethicknessofthesteelplatehandledboxgirderbeams,maingirderstrength,stiffnesshasnotreducedsignificantly,andmeetthejobrequirements;Thebiggeststressoccurslocationisalsonochange,mainweightwasreducedby8.572%.BettertoachievethepurposeoftheLordLiangGangstructureoptimization.Inaddition,fromtheabovefiniteelementanalysisresultsindicatedthatthecomprehensivestressandgirdershearstressvaluehigherpartsofDiaoZhuangKonglugareanearbyboxbeamendsandsteelweldingplace,althoughtheresultsshowthatstrengthmeetthejobrequirements,buttomakethestrengthentreatmentcaneffectivelyimprovethelifeandsecurity.Shouldbeusedtoimproveweldingprocessorweldingreinforcingplateshallbereinforcedtheway.5epilogueCombiningwiththedesignpersonneldesignexperienceandfiniteelementanalysisfunction,throughthequickwayofvirtualtestfortheoptimizationofthestructuredesignisrelative.Andtheoptimizationofthestructureofthetraditionaldesignmethod,thecomparison,thismethodhaveisnotmathematicalprogrammingconceptofoptimalsolution,butitseasytoimplement.Inaddition,thispaperexamplehasbeenputintoproduction,andtheresultforthesimilarbridgecranesteelstructureoptimizationdesignprovidethebeneficialreference.Reference:[1]wasclimbing.Thefiniteelementanalysisandapplication[M].Beijing:tsinghuauniversitypress,2004.[2]XuGeNing.Liftingtransportmetalstructuredesign[M].Beijing:mechanicalengineeringpress,1995.[3]YuLanFeng,ZhouZhiAo.Railwaycraneturntablefiniteelementanalysis[J].Journalofcomputationalmechanics,2003,16(5):627-630.基于有限元分析的单梁桥式起重机优化设计摘要利用ANSYS9.0分析单梁桥式起重机钢结构的力学特性,并结合分析结果咯实际经验提出了相应的结构优化方案,其正确性和合理性得到验证,并为同类产品优化设计提供有益参考。关键字:桥式起重机;钢结构;优化设计;FEM目前广泛应用于机械制作、冶金、钢铁、码头的桥式起重机占具我国起重机的40%左右。原有起重机设计方法多为传统的设计方法,设计效率低下,设计起重机安全系数大、消耗原料多、结构不尽合理。亟待对其钢结构进行优化设计。通常的优化设计是利用数学规划的方法,将机械工程的设计问题转化为由目标函授与约束条件描述额度最优化问题。该方法对于解决较典型的优化问题可以得到较好的优化结果,但对于工程实际中经常出现的多目标、多约束条件优化问题则存在着数学模型难以建立及计算复杂,难于推广应用等问题。鉴于此,本文利用有限元分析软件对可能的结构设计方案快速进行虚拟试验,并通过分析FEM虚拟试验的结果,作相应的结构优化。以LX型单梁桥式起重机主梁钢结构为例,利用ANSYS模拟其在最恶劣工况下的应力分布和变形情况,提出并检验了优化方案。LX型5t电动悬挂单梁桥式起重机钢结构特点LX型5t电动悬挂单梁桥式起重机由主梁和两条端梁、电动葫芦、大车运行机构、电气设备等主要部件组成。车轮组倒挂在车间的H型轨下运行。主梁中部由工字梁I32a和箱型梁焊接而成;两端悬臂部分则由工字钢I32a与槽钢[28a焊接而成;端梁由两根槽钢[18与钢板焊接而成,主梁通过箱型梁两侧的吊耳实现与端梁的连接,如图1所示。有限元建模和分析方案2.1单元的选择与网格划分LX型5t电动悬挂单梁桥式起重机钢结构中的工字钢、槽钢和箱型梁的主尺寸均为其厚度的10倍以上,故选定壳单元(shall63)对该桥式起重机进行有限元分析[1]。此外,选用壳单元便于模型的优化修改。2.2确定最恶劣工况相关理论表明:小车位于跨中并制动,大车行径轨道接头并制动;小车位于悬臂梁极限位置并制动,大车行径轨道接头并发生偏斜为最恶劣的2中工况[2]。前者用于确定主梁跨中最大综合应力和最大挠度;后者用于确定主梁端部支撑截面上的最大剪应力。2.3确定加载方案和约束模式按以上2种工况和主梁钢结构特点可确定加载方案如表1所示。主梁为简支伸臂梁模型,受垂直和水平方向载荷作用,应约束一端支点X,Y,Z方向的位移,约束另一端支点X,Y方向的位移。优化前结构分析利用ANSYS按以上2中工况加载求解后,其结果见图2、图3。图2为主梁的工况1下综合应力分布云图。考察该应力分布云图可知,主梁吊耳吊装孔附近区域应力值较高,并在吊装孔工作面出现了最大综合应力171.778MPa。主梁中部应力只有48.851~93.7MPa。箱型梁两端直角和锐角过渡焊缝处应力为117.127~140.548MPa。图3为主梁的变形情况,垂直方向最大位移20.766mm,水平方向最大位移为7.398mm,最大位移发生在主梁中部。四.结构优化方案4.1方案提出的依据由以上分析结果可知:该单梁桥式起重机强度和刚度储备充足,这是因为采用偏安全的设计方法,计算时选取了较大的系数。考虑到主梁的承载部分为工字钢,在没有充分论证的情况下改换型号较小饿工字钢存在一定得不确定性。所以,本为从主钢梁的箱型梁入手,初步探讨优化箱型梁钢板厚度对主梁强度和刚
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大班美术活动动物面具
- 肾性水肿的护理
- 2022-2023学年山东省菏泽市高二(下)期中地理试卷
- 专题33 诗歌和小说
- 专题6 酸碱盐与金属
- 湖北商贸学院《工程经济学》2023-2024学年第一学期期末试卷
- 湖北汽车工业学院《汽车造型设计1》2022-2023学年第一学期期末试卷
- 湖北汽车工业学院《机械设计基础B》2023-2024学年第一学期期末试卷
- 湖北汽车工业学院《互换性与技术测量》2023-2024学年第一学期期末试卷
- 课件 下载软件
- 肺胀中医病历
- 风电场工作安全培训ppt课件
- 单晶金刚石项目建设方案与投资计划(参考范文)
- 植物光谱反射率曲线规律及影响因素
- IQC(来料)检测报告模板
- 光伏组件拆卸及转运方案(二)
- 沥青检测报告(共10页)
- 心血管疾病患者营养评估与饮食指导
- 家庭教育讲座(课堂PPT)
- 解一元一次方程复习课PPT精品文档
- 毕业设计(论文)基于PLC自动门控制系统的设计
评论
0/150
提交评论