2023-2024学年河北唐山市区县联考数学高一下期末统考模拟试题含解析_第1页
2023-2024学年河北唐山市区县联考数学高一下期末统考模拟试题含解析_第2页
2023-2024学年河北唐山市区县联考数学高一下期末统考模拟试题含解析_第3页
2023-2024学年河北唐山市区县联考数学高一下期末统考模拟试题含解析_第4页
2023-2024学年河北唐山市区县联考数学高一下期末统考模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年河北唐山市区县联考数学高一下期末统考模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列各命题中,假命题的是()A.“度”与“弧度”是度量角的两种不同的度量单位B.一度的角是周角的,一弧度的角是周角的C.根据弧度的定义,一定等于弧度D.不论是用角度制还是用弧度制度量角,它们都与圆的半径长短有关2.已知点在第四象限,则角在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.某公司为激励创新,计划逐年加大研发奖金投入,若该公司年全年投入研发奖金万元,在此基础上,每年投入的研发奖金比上一年增长,则该公司全年投入的研发奖金开始超过万元的年份是()(参考数据:,,)A.年 B.年 C.年 D.年4.如图,为了测量山坡上灯塔的高度,某人从高为的楼的底部处和楼顶处分别测得仰角为,,若山坡高为,则灯塔高度是()A. B. C. D.5.已知数列和数列都是无穷数列,若区间满足下列条件:①;②;则称数列和数列可构成“区间套”,则下列可以构成“区间套”的数列是()A., B.,C., D.,6.为了得到函数y=sin(x+A.向左平行移动π3B.向右平行移动π3C.向上平行移动π3D.向下平行移动π37.已知函数的图像如图所示,关于有以下5个结论:(1);(2),;(3)将图像上所有点向右平移个单位得到的图形所对应的函数是偶函数;(4)对于任意实数x都有;(5)对于任意实数x都有;其中所有正确结论的编号是()A.(1)(2)(3) B.(1)(2)(4)(5) C.(1)(2)(4) D.(1)(3)(4)(5)8.已知,,,则a,b,c的大小关系为()A. B. C. D.9.下列命题中正确的是()A.相等的角终边必相同 B.终边相同的角必相等C.终边落在第一象限的角必是锐角 D.不相等的角其终边必不相同10.已知函数,则下列命题正确的是()①的最大值为2;②的图象关于对称;③在区间上单调递增;④若实数m使得方程在上恰好有三个实数解,,,则;A.①② B.①②③ C.①③④ D.①②③④二、填空题:本大题共6小题,每小题5分,共30分。11.数列满足,则数列的前6项和为_______.12.已知是边长为4的等边三角形,为平面内一点,则的最小值为__________.13.在中,内角,,所对的边分别为,,,,且,则面积的最大值为______.14.过点作直线与圆相交,则在弦长为整数的所有直线中,等可能的任取一条直线,则弦长长度不超过14的概率为______________.15.若则____________16.已知直线:与圆交于,两点,过,分别作的垂线与轴交于,两点,若,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量,且(1)当时,求及的值;(2)若函数的最小值是,求实数的值.18.在中,已知角的对边分别为,且.(1)求角的大小;(2)若,,求的面积.19.已知A、B分别在射线CM、CN(不含端点C)上运动,∠MCN=23π(Ⅰ)若a、b、(Ⅱ)若c=3,∠ABC=θ,试用θ表示ΔABC20.直线经过点,且与圆相交与两点,截得的弦长为,求的方程.21.如图,在三棱锥中,分别为棱上的中点.(1)求证:平面;(2)若平面,求证:平面平面.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

根据弧度制的概念,逐项判断,即可得出结果.【详解】A选项,“度”与“弧度”是度量角的两种不同的度量单位,正确;B选项,一度的角是周角的,一弧度的角是周角的,正确;C选项,根据弧度的定义,一定等于弧度,正确;D选项,用角度制度量角,与圆的半径长短无关,故D错.故选:D.【点睛】本题主要考查弧度制的相关判定,熟记概念即可,属于基础题型.2、B【解析】

根据第四象限内点的坐标特征,再根据正弦值、正切值的正负性直接求解即可.【详解】因为点在第四象限,所以有:是第二象限内的角.故选:B【点睛】本题考查了正弦值、正切值的正负性的判断,属于基础题.3、B【解析】试题分析:设从2015年开始第年该公司全年投入的研发资金开始超过200万元,由已知得,两边取常用对数得,故从2019年开始,该公司全年投入的研发资金开始超过200万元,故选B.【考点】增长率问题,常用对数的应用【名师点睛】本题考查等比数列的实际应用.在实际问题中平均增长率问题可以看作等比数列的应用,解题时要注意把哪个数作为数列的首项,然后根据等比数列的通项公式写出通项,列出不等式或方程就可求解.4、B【解析】

过点作于点,过点作于点,在中由正弦定理求得,在中求得,从而求得灯塔的高度.【详解】过点作于点,过点作于点,如图所示,在中,由正弦定理得,,即,,在中,,又山高为,则灯塔的高度是.故选.【点睛】本题考查了解三角形的应用和正弦定理,考查了转化思想,属中档题.5、C【解析】

直接利用已知条件,判断选项是否满足两个条件即可.【详解】由题意,对于A:,,∵,∴不成立,所以A不正确;对于B:由,,得不成立,所以B不正确;对于C:,∵,∴成立,并且也成立,所以C正确;对于D:由,,得,∴不成立,所以D不正确;故选:C.【点睛】本题考查新定义的理解和运用,考查数列的极限的求法,考查分析问题解决问题的能力及运算能力,属于中档题.6、A【解析】试题分析:为得到函数y=sin(x+π3)【考点】三角函数图象的平移【名师点睛】本题考查三角函数图象的平移,函数y=f(x)的图象向右平移a个单位长度得y=f(x-a)的图象,而函数y=f(x)的图象向上平移a个单位长度得y=f(x)+a的图象.左、右平移涉及的是x的变化,上、下平移涉及的是函数值f(x)的变化.7、B【解析】

由图象可观察出的最值和周期,从而求出,将图像上所有的点向右平移个单位得到的函数,可判断(3)的正误,利用,可判断(4)(5)的正误.【详解】由图可知:,所以,,所以,即因为,所以,所以,故(1)(2)正确将图像上所有的点向右平移个单位得到的函数为此函数是奇函数,故(3)错误因为所以关于直线对称,即有故(4)正确因为所以关于点对称,即有故(5)正确综上可知:正确的有(1)(2)(4)(5)故选:B【点睛】本题考查的是三角函数的图象及其性质,属于中档题.8、D【解析】

由,,,得解.【详解】解:因为,,,所以,故选:D.【点睛】本题考查了指数幂,对数值的大小关系,属基础题.9、A【解析】

根据终边相同的角的的概念可得正确的选项.【详解】终边相同的角满足,故B、D错误,终边落在第一象限的角可能是负角,故C错误,相等的角的终边必定相同,故A正确.故选:A.【点睛】本题考查终边相同的角,注意终边相同时,有,本题属于基础题.10、C【解析】

,由此判断①的正误,根据判断②的正误,由求出的单调递增区间,即可判断③的正误,结合的图象判断④的正误.【详解】因为,故①正确因为,故②不正确由得所以在区间上单调递增,故③正确若实数m使得方程在上恰好有三个实数解,结合的图象知,必有此时,另一解为即,,满足,故④正确综上可知:命题正确的是①③④故选:C【点睛】本题考查的是三角函数的图象及其性质,解决这类问题时首先应把函数化成三角函数基本型.二、填空题:本大题共6小题,每小题5分,共30分。11、84【解析】

根据分组求和法以及等差数列与等比数列前n项和公式求解.【详解】因为,所以.【点睛】本题考查分组求和法以及等差数列与等比数列前n项和公式,考查基本分析求解能力,属基础题.12、-1.【解析】分析:可建立坐标系,用平面向量的坐标运算解题.详解:建立如图所示的平面直角坐标系,则,设,∴,易知当时,取得最小值.故答案为-1.点睛:求最值问题,一般要建立一个函数关系式,化几何最值问题为函数的最值,本题通过建立平面直角坐标系,把向量的数量积用点的坐标表示出来后,再用配方法得出最小值,根据表达式的几何意义也能求得最大值.13、【解析】

根据正弦定理将转化为,即,由余弦定理得,再用基本不等式法求得,根据面积公式求解.【详解】根据正弦定理可转化为,化简得由余弦定理得因为所以,当且仅当时取所以则面积的最大值为.故答案为:【点睛】本题主要考查正弦定理,余弦定理,基本不等式的综合应用,还考查了运算求解的能力,属于中档题.14、【解析】

根据圆的性质可求得最长弦和最短弦的长度,从而得到所有弦长为整数的直线条数,从中找到长度不超过的直线条数,根据古典概型求得结果.【详解】由题意可知,最长弦为圆的直径:在圆内部且圆心到的距离为最短弦长为:弦长为整数的直线的条数有:条其中长度不超过的条数有:条所求概率:本题正确结果:【点睛】本题考查古典概型概率问题的求解,涉及到过圆内一点的最长弦和最短弦的长度的求解;易错点是忽略圆的对称性,造成在求解弦长为整数的直线的条数时出现丢根的情况.15、【解析】因为,所以=.故填.16、4【解析】

由题,根据垂径定理求得圆心到直线的距离,可得m的值,既而求得CD的长可得答案.【详解】因为,且圆的半径为,所以圆心到直线的距离为,则由,解得,代入直线的方程,得,所以直线的倾斜角为,由平面几何知识知在梯形中,.故答案为4【点睛】解决直线与圆的综合问题时,一方面,要注意运用解析几何的基本思想方法(即几何问题代数化),把它转化为代数问题;另一方面,由于直线与圆和平面几何联系得非常紧密,因此,准确地作出图形,并充分挖掘几何图形中所隐含的条件,利用几何知识使问题较为简捷地得到解决.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2).【解析】

(1)以向量为载体求解向量数量积、模长,我们只需要把向量坐标表示出来,最后用公式就能轻松完成;(2)由(1)可以把表达式求出,最终化成二次复合型函数模式,考虑轴与区间的位置关系,我们就能对函数进行进一步的研究.【详解】(1)因为,所以又因为,所以(2),当时,.当时,不满足.当时,,,不满足.综上,实数的值为.【点睛】在研究三角函数相关的性质(值域、对称中心、对称轴、单调性……)我们都是将其化为(或者余弦、正切相对应)的形式,利用整体思想,我们能比较方便的去研究他们相关性质.第二问中我们其实就是求最小值问题,当然掺杂了二次函数的“轴变区间定”的考点.,综合性较强.18、(1);(2).【解析】

(1)利用边角互化思想得,由结合两角和的正弦公式可求出的值,于此得出角的大小;(2)由余弦定理可计算出,再利用三角形的面积公式可得出的面积.【详解】(1)∵是的内角,∴且,又由正弦定理:得:,化简得:,又∵,∴;(2)∵,,∴由余弦定理和(1)得,即,可得:,又∵,故所求的面积为.【点睛】本题考查正弦定理边角互化的思想,考查余弦定理以及三角形的面积公式,本题巧妙的地方在于将配凑为,避免利用方程思想求出边的值,考查计算能力,属于中等题.19、(1)c=7或c=2.(1)=2sinθ+2【解析】试题分析:(Ⅰ)由题意可得a=c-4、b=c-1.又因∠MCN=π,,可得恒等变形得c1-9c+14=0,再结合c>4,可得c的值.(Ⅱ)在△ABC中,由正弦定理可得AC=1sⅠnθ,BC=,△ABC的周长f(θ)=|AC|+|BC|+|AB|=,再由利用正弦函数的定义域和值域,求得f(θ)取得最大值.试题解析:(Ⅰ)∵a、b、c成等差,且公差为1,∴a=c-4、b=c-1.又因∠MCN=π,,可得,恒等变形得c1-9c+14=0,解得c=2,或c=1.又∵c>4,∴c=2.(Ⅱ)在△ABC中,由正弦定理可得.∴△ABC的周长f(θ)=|AC|+|BC|+|AB|=,又,当,即时,f(θ)取得最大值.考点:1.余弦定理;1.正弦定理20、或【解析】

直线截圆得的弦长为,结合圆的半径为5,利用勾股定理可得圆心到直线的距离,再利用点到直线的距离公式列方程求出直线斜率,由点斜式可得结果.【详解】设直线的方程为,即,因为圆的半径为5,截得的弦长为所以圆心到直线的距离,即或,∴所求直线的方程为或.【点睛】本题主要考查点到直线距离公式以及圆的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论