版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省内江市金墨职业中学高一数学文期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.函数的值域为(
)A. B. C. D.参考答案:B略2.幂函数的图像经过点(2,4),则等于
(A)2
(B)8
(C)16
(D)64参考答案:C3.方程的解所在区间是A.(0,2)
B.(1,2)
C.(2,3)
D.(3,4)参考答案:C略4.函数的最小正周期是()A.
B.
C.
D.参考答案:B略5.若集合,,则能使成立的所有的集合是(
)、
、
、
、参考答案:C略6.设,,c,,且则下列结论中正确的是()A.
B.C.
D.参考答案:B7.如图,在中,,为△ABC所在平面外一点,PA⊥面ABC,则四面体P-ABC中共有直角三角形个数为
A.4
B.3
C.2
D.1参考答案:A8.设f(x)是R上的偶函数,且在[0,+∞)上递增,若f()=0,f(logx)<0,那么x的取值范围是(
)A.<x<2 B.x>2 C.<x<1 D.x>2或<x<1参考答案:A【考点】奇偶性与单调性的综合.【专题】函数的性质及应用.【分析】根据函数奇偶性和单调性之间的关系,将不等式进行转化即可得到结论.【解答】解:∵函数f(x)是R上的偶函数,∴f(x)=f(﹣x)=f(|x|),∴f(logx)=f(|logx|).∵f()=0,∴不等式f(logx)<0等价为f(|logx|)<f(),又∵函数f(x)在[0,+∞)上递增,∴|logx|<,得:<logx<,解得<x<2.故选A.【点评】本题主要考查不等式的求解,根据函数奇偶性和单调性之间的关系,将不等式进行转化是解决本题的关键.9.若函数f(x)=(x+1)(x-a)为偶函数,则a=()A.-2
B.-1
C.1
D.2参考答案:C10.若,是夹角为60°的两个单位向量,则与的夹角为(
)A.30° B.60° C.90° D.120°参考答案:A【分析】根据条件可求出,,从而可求出,这样即可求出,根据向量夹角的范围即可求出夹角.【详解】由题得;,,所以;;又;的夹角为.故选:.【点睛】考查向量数量积的运算及计算公式,向量长度的求法,向量夹角的余弦公式,向量夹角的范围.二、填空题:本大题共7小题,每小题4分,共28分11.已知幂函数的图象过点,则f(x)=____________.参考答案:【分析】设幂函数的解析式为,将点的坐标代入求出参数即可.【详解】解:设幂函数的解析式为因为函数过点所以解得故答案为【点睛】本题考查待定系数法求幂函数的解析式,属于基础题.12.在△ABC中,角A、B、C的对边分别为a,b,c,已知(b+c):(c+a):(a+b)=4:5:6,则下列结论正确的是
(1)△ABC一定是钝角三角形;
(2)△ABC被唯一确定;(3)sinA:sinB:sinC=7:5:3;
(4)若b+c=8,则△ABC的面积为.参考答案:(1)、(3)
【考点】正弦定理.【分析】设b+c=4k,a+c=5k,a+b=6k,求得a、b、c的值,再利用余弦定理求得cosA的值,可得A=120°,再求得△ABC的面积为bc?sinA的值,从而得出结论.【解答】解:在△ABC中,由于(b+c):(c+a):(a+b)=4:5:6,可设b+c=4k,a+c=5k,a+b=6k,求得a=,b=,c=.求得cosA==﹣<0,故A=120°为钝角,故(1)正确.由以上可得,三角形三边之比a:b:c=7:5:3,故这样的三角形有无数多个,故(2)不正确,(3)正确.若b+c=8,则b=5、c=3,由正弦定理可得△ABC的面积为bc?sinA=sin120°=,故(4)不正确.故答案为(1)、(3).【点评】本题主要考查正弦定理、余弦定理的应用,根据三角函数的值求角,属于中档题.13.将函数f(x)=sinωx(ω>0)的图象向右平移个单位后得到函数g(x)的图象,若对于满足|f(x1)﹣g(x2)|=2的x1,x2,有|x1﹣x2|min=,则f()的值为
.参考答案:1【考点】函数y=Asin(ωx+φ)的图象变换.【分析】由题意可得到函数g(x)=sinω(x﹣),对满足|f(x1)﹣g(x2)|=2的可知,两个函数的最大值与最小值的差为2,有|x1﹣x2|min=﹣,由此求得ω的值,可得f(x)的解析式,从而求得f()的值.【解答】解:将函数f(x)=sinωx(ω>0)的图象向右平移个单位后得到函数g(x)=sinω(x﹣)的图象,若对于满足|f(x1)﹣g(x2)|=2的x1,x2,有|x1﹣x2|min=,则﹣=,∴T==π,∴ω=2,f(x)=sin2x,则f()=sin=1,故答案为:1.【点评】本题主要考查了三角函数的图象平移,函数的最值以及函数的周期的应用,考查分析问题解决问题的能力,是好题,题目新颖.有一定难度,选择题,可以回代验证的方法快速解答,属于中档题.14.给定,设函数满足:对于任意大于的正整数:(1)设,则其中一个函数在处的函数值为_________
;(2)设,且当时,,则不同的函数的个数为________.参考答案:略15.已知函数f(x)=sinx﹣cosx,则=. 参考答案:【考点】两角和与差的正弦函数;函数的值. 【专题】转化思想;综合法;三角函数的求值. 【分析】由条件利用两角差的正弦公式化简函数f(x)的解析式,从而求得f()的值. 【解答】解:∵函数f(x)=sinx﹣cosx=sin(x﹣), 则=sin(﹣)=﹣=﹣, 故答案为:﹣. 【点评】本题主要考查两角差的正弦公式,属于基础题. 16.若,,,则
参考答案:3
略17.已知弧长为πcm的弧所对的圆心角为,则这条弧所在圆的直径是
cm,这条弧所在的扇形面积是
cm2.参考答案:8,2π【考点】扇形面积公式.【分析】根据弧长公式求出对应的半径,然后根据扇形的面积公式求面积即可.【解答】解:∵弧长为πcm的弧所对的圆心角为,∴半径r=4cm,直径是8cm,∴这条弧所在的扇形面积为S==2πcm2.故答案为8,2π.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.判断下列命题的真假:(1)已知若(2)(3)若则方程无实数根。(4)存在一个三角形没有外接圆。参考答案:解析:(1)为假命题,反例:
(2)为假命题,反例:不成立
(3)为真命题,因为无实数根
(4)为假命题,因为每个三角形都有唯一的外接圆。19.(12分)A、B、C、D、E五位学生的数学成绩x与物理成绩y(单位:分)如下表:x8075706560y7066686462(1)请根据上表提供的数据,用最小二乘法求线性回归方程=x+;(参考数值:80×70+75×66+70×68+65×64+60×62=23190,802+752+702+652+602=24750)(2)若学生F的数学成绩为90分,试根据(1)求出的线性回归方程,预测其物理成绩(结果保留整数).参考答案:考点: 线性回归方程.专题: 应用题;高考数学专题;概率与统计.分析: (1)分别做出横标和纵标的平均数,利用最小二乘法做出b的值,再做出a的值,写出线性回归方程,得到结果;(2)x=90时,代入回归直线方程,即可预测其物理成绩.解答: (1)因为,(1分),(2分),(3分)(4分)所以,(6分).(7分)故所求线性回归方程为.(8分)(2)由(1),当x=90时,,(11分)答:预测学生F的物理成绩为73分.(12分)点评: 本题考查变量间的相关关系,考查回归分析的应用,考查学生的计算能力,属于中档题.20.(12分)求值:(1)lg5(lg8+lg1000)+(lg2)2+lg+lg0.06;(2)(2)﹣(﹣9.6)0﹣(3)+(1.5)﹣2.参考答案:考点: 对数的运算性质;有理数指数幂的化简求值.专题: 计算题.分析: (1)利用对数的运算法则和lg2+lg5=1即可得出;(2)利用指数幂的运算性质即可得出.解答: (1)原式==3lg5lg2+3lg5+3lg22+lg10﹣2=3lg2(lg5+lg2)+3lg5﹣2=3(lg2+lg5)﹣2=1.(2)原式=﹣1﹣+==.点评: 本题考查了对数的运算法则和lg2+lg5=1、指数幂的运算性质,属于基础题.21.已知圆C经过两点,且圆心C在x轴上.(1)求圆C的方程;(2)若直线,且l截y轴所得纵截距为5,求直线l截圆C所得线段AB的长度.参考答案:(1)(2)【分析】(1)设圆心的坐标为,利用求出的值,可确定圆心坐标,并计算出半径长,然后利用标准方程可写出圆的方程;(2)由,得出直线的斜率与直线的斜率相等,可得出直线的斜率,再由截轴所得纵截距为,可得出直线的方程,计算圆心到直线的距离,则.【详解】(1)设圆心,则,则所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 45015-2024钛石膏综合利用技术规范
- 2024年广东省普通高等学校招收中等职业学校毕业生统一模拟考试语文题真题(原卷版)
- 卡斯钦-贝克病的健康宣教
- 干呕的健康宣教
- 足趾痛的健康宣教
- 毛孔堵塞的临床护理
- 子宫炎的健康宣教
- 孕期积食的健康宣教
- 《第一章》课件-1.1人工智能的诞生
- 皮肤脓肿的临床护理
- 低压电器-认识低压电器(电气控制与PLC课件)
- 儿童绘画心理学测试题
- 关务与外贸服务专业职业生涯规划书
- 多尺度建模与仿真
- 辽宁省2023年高中学业水平合格性考试政治试卷真题(答案详解)
- 反无人飞机技术方案
- 《NBA介绍英文》课件
- 人际沟通.从心开始(大学生人际交往)
- KYN28-12A开关柜技术规范书
- 化疗药物渗漏PDCA循环分析
- 国开《小学数学教学研究》形考任务二
评论
0/150
提交评论