




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江杭州西湖区重点名校2024年中考试题猜想数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列二次函数中,图象以直线x=2为对称轴、且经过点(0,1)的是()A.y=(x﹣2)2+1B.y=(x+2)2+1C.y=(x﹣2)2﹣3D.y=(x+2)2﹣32.把三角形按如图所示的规律拼图案,其中第①个图案中有1个三角形,第②个图案中有4个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A.15 B.17 C.19 D.243.已知关于x,y的二元一次方程组的解为,则a﹣2b的值是()A.﹣2 B.2 C.3 D.﹣34.一、单选题在某校“我的中国梦”演讲比赛中,有7名学生参加了决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这7名学生成绩的()A.平均数 B.众数 C.中位数 D.方差5.﹣3的绝对值是()A.﹣3 B.3 C.- D.6.点A(x1,y1)、B(x2,y2)、C(x3,y3)都在反比例函数的图象上,且x1<x2<0<x3,则y1、y2、y3的大小关系是()A.y3<y1<y2 B.y1<y2<y3 C.y3<y2<y1 D.y2<y1<y37.如图所示,若将△ABO绕点O顺时针旋转180°后得到△A1B1O,则A点的对应点A1点的坐标是()A.(3,﹣2) B.(3,2) C.(2,3) D.(2,﹣3)8.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙同学:它有8条棱.该模型的形状对应的立体图形可能是()A.三棱柱 B.四棱柱 C.三棱锥 D.四棱锥9.如图所示的几何体的主视图是()A. B. C. D.10.在平面直角坐标系中,点P(m﹣3,2﹣m)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限11.下列分式是最简分式的是()A. B. C. D.12.一次函数y=2x+1的图像不经过(
)A.第一象限B.第二象限C.第三象限D.第四象限二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图所示,轮船在处观测灯塔位于北偏西方向上,轮船从处以每小时海里的速度沿南偏西方向匀速航行,小时后到达码头处,此时,观测灯塔位于北偏西方向上,则灯塔与码头的距离是______海里(结果精确到个位,参考数据:,,)14.计算(-2)×3+(-3)=_______________.15.的算术平方根是_____.16.如图,Rt△ABC中,∠ACB=90°,∠A=15°,AB的垂直平分线与AC交于点D,与AB交于点E,连接BD.若AD=14,则BC的长为_____.17.已知是锐角,那么cos=_________.18.如图,中,,,,将绕点逆时针旋转至,使得点恰好落在上,与交于点,则的面积为_________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.(1)求商场经营该商品原来一天可获利润多少元?(2)设后来该商品每件降价x元,商场一天可获利润y元.①若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?②求出y与x之间的函数关系式,并通过画该函数图象的草图,观察其图象的变化趋势,结合题意写出当x取何值时,商场获利润不少于2160元.20.(6分)如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=12(1)求证:直线BF是⊙O的切线;(2)若AB=5,sin∠CBF=5521.(6分)学了统计知识后,小红就本班同学上学“喜欢的出行方式”进行了一次调查,图(1)和图(2)是她根据采集的数据绘制的两幅不完整的统计图,请根据图中提供的信息解答以下问题:(1)补全条形统计图,并计算出“骑车”部分所对应的圆心角的度数.(2)若由3名“喜欢乘车”的学生,1名“喜欢骑车”的学生组队参加一项活动,现欲从中选出2人担任组长(不分正副),求出2人都是“喜欢乘车”的学生的概率,(要求列表或画树状图)22.(8分)解不等式组:,并将它的解集在数轴上表示出来.23.(8分)灞桥区教育局为了了解七年级学生参加社会实践活动情况,随机抽取了铁一中滨河学部分七年级学生2016﹣2017学年第一学期参加实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图.请根据图中提供的信息,回答下列问题:(1)a=%,并补全条形图.(2)在本次抽样调查中,众数和中位数分别是多少?(3)如果该区共有七年级学生约9000人,请你估计活动时间不少于6天的学生人数大约有多少?24.(10分)解不等式组:,并求出该不等式组所有整数解的和.25.(10分)如图,在中,,平分,交于点,点在上,经过两点,交于点,交于点.求证:是的切线;若的半径是,是弧的中点,求阴影部分的面积(结果保留和根号).26.(12分)如图,在⊙O中,弦AB与弦CD相交于点G,OA⊥CD于点E,过点B的直线与CD的延长线交于点F,AC∥BF.(1)若∠FGB=∠FBG,求证:BF是⊙O的切线;(2)若tan∠F=,CD=a,请用a表示⊙O的半径;(3)求证:GF2﹣GB2=DF•GF.27.(12分)甲、乙两名队员的10次射击训练,成绩分别被制成下列两个统计图.并整理分析数据如下表:平均成绩/环中位数/环众数/环方差甲771.2乙78(1)求,,的值;分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解析】试题分析:根据顶点式,即A、C两个选项的对称轴都为x=2,再将(0,1)代入,符合的式子为C选项考点:二次函数的顶点式、对称轴点评:本题考查学生对二次函数顶点式的掌握,难度较小,二次函数的顶点式解析式为y=(x-a)2+h,顶点坐标为2、D【解析】
由图可知:第①个图案有三角形1个,第②图案有三角形1+3=4个,第③个图案有三角形1+3+4=8个,第④个图案有三角形1+3+4+4=12,…第n个图案有三角形4(n﹣1)个(n>1时),由此得出规律解决问题.【详解】解:解:∵第①个图案有三角形1个,第②图案有三角形1+3=4个,第③个图案有三角形1+3+4=8个,…∴第n个图案有三角形4(n﹣1)个(n>1时),则第⑦个图中三角形的个数是4×(7﹣1)=24个,故选D.【点睛】本题考查了规律型:图形的变化类,根据给定图形中三角形的个数,找出an=4(n﹣1)是解题的关键.3、B【解析】
把代入方程组得:,解得:,所以a−2b=−2×()=2.故选B.4、C【解析】
由于其中一名学生想要知道自己能否进入前3名,共有7名选手参加,故应根据中位数的意义分析.【详解】由于总共有7个人,且他们的成绩各不相同,第4的成绩是中位数,要判断是否进入前3名,故应知道中位数的多少.故选C.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.5、B【解析】
根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-1|=1.故选B.【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数.6、A【解析】
作出反比例函数的图象(如图),即可作出判断:∵-3<1,∴反比例函数的图象在二、四象限,y随x的增大而增大,且当x<1时,y>1;当x>1时,y<1.∴当x1<x2<1<x3时,y3<y1<y2.故选A.7、A【解析】
由题意可知,点A与点A1关于原点成中心对称,根据图象确定点A的坐标,即可求得点A1的坐标.【详解】由题意可知,点A与点A1关于原点成中心对称,∵点A的坐标是(﹣3,2),∴点A关于点O的对称点A'点的坐标是(3,﹣2).故选A.【点睛】本题考查了中心对称的性质及关于原点对称点的坐标的特征,熟知中心对称的性质及关于原点对称点的坐标的特征是解决问题的关键.8、D【解析】试题分析:根据有四个三角形的面,且有8条棱,可知是四棱锥.而三棱柱有两个三角形的面,四棱柱没有三角形的面,三棱锥有四个三角形的面,但是只有6条棱.故选D考点:几何体的形状9、A【解析】
找到从正面看所得到的图形即可.【详解】解:从正面可看到从左往右2列一个长方形和一个小正方形,故选A.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.10、A【解析】
分点P的横坐标是正数和负数两种情况讨论求解.【详解】①m-3>0,即m>3时,2-m<0,所以,点P(m-3,2-m)在第四象限;②m-3<0,即m<3时,2-m有可能大于0,也有可能小于0,点P(m-3,2-m)可以在第二或三象限,综上所述,点P不可能在第一象限.故选A.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).11、C【解析】解:A.,故本选项错误;B.,故本选项错误;C.,不能约分,故本选项正确;D.,故本选项错误.故选C.点睛:本题主要考查对分式的基本性质,约分,最简分式等知识点的理解和掌握,能根据分式的基本性质正确进行约分是解答此题的关键.12、D【解析】
根据一次函数的系数判断出函数图象所经过的象限,由k=2>0,b=1>0可知,一次函数y=2x+1的图象过一、二、三象限.另外此题还可以通过直接画函数图象来解答.【详解】∵k=2>0,b=1>0,∴根据一次函数图象的性质即可判断该函数图象经过一、二、三象限,不经过第四象限.故选D.【点睛】本题考查一次函数图象与系数的关系,解决此类题目的关键是确定k、b的正负.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、1【解析】
作BD⊥AC于点D,在直角△ABD中,利用三角函数求得BD的长,然后在直角△BCD中,利用三角函数即可求得BC的长.【详解】∠CBA=25°+50°=75°,作BD⊥AC于点D,则∠CAB=(90°﹣70°)+(90°﹣50°)=20°+40°=60°,∠ABD=30°,∴∠CBD=75°﹣30°=45°,在直角△ABD中,BD=AB•sin∠CAB=20×sin60°=20×=10,在直角△BCD中,∠CBD=45°,则BC=BD=10×=10≈10×2.4=1(海里),故答案是:1.【点睛】本题考查了解直角三角形的应用——方向角问题,正确求得∠CBD以及∠CAB的度数是解决本题的关键.14、-9【解析】
根据有理数的计算即可求解.【详解】(-2)×3+(-3)=-6-3=-9【点睛】此题主要考查有理数的混合运算,解题的关键是熟知有理数的运算法则.15、【解析】∵=8,()2=8,∴的算术平方根是.故答案为:.16、1【解析】解:∵DE是AB的垂直平分线,∴AD=BD=14,∴∠A=∠ABD=15°,∴∠BDC=∠A+∠ABD=15°+15°=30°.在Rt△BCD中,BC=BD=×14=1.故答案为1.点睛:本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,30°角所对的直角边等于斜边的一半的性质,熟记性质是解答本题的关键.17、【解析】
根据已知条件设出直角三角形一直角边与斜边的长,再根据勾股定理求出另一直角边的长,由三角函数的定义直接解答即可.【详解】由sinα==知,如果设a=x,则c=2x,结合a2+b2=c2得b=x.∴cos==.故答案为.【点睛】本题考查的知识点是同角三角函数的关系,解题的关键是熟练的掌握同角三角函数的关系.18、【解析】
首先证明△CAA′是等边三角形,再证明△A′DC是直角三角形,在Rt△A′DC中利用含30度的直角三角形三边的关系求出CD、A′D即可解决问题.【详解】在Rt△ACB中,∠ACB=90°,∠B=30°,
∴∠A=60°,
∵△ABC绕点C逆时针旋转至△A′B′C,使得点A′恰好落在AB上,
∴CA=CA′=2,∠CA′B′=∠A=60°,
∴△CAA′为等边三角形,
∴∠ACA′=60°,
∴∠BCA′=∠ACB-∠ACA′=90°-60°=30°,
∴∠A′DC=180°-∠CA′B′-∠BCA′=90°,
在Rt△A′DC中,∵∠A′CD=30°,∴A′D=CA′=1,CD=A′D=,∴.故答案为:【点睛】本题考查了含30度的直角三角形三边的关系,等边三角形的判定和性质以及旋转的性质,掌握旋转的性质“对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等”是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)一天可获利润2000元;(2)①每件商品应降价2元或8元;②当2≤x≤8时,商店所获利润不少于2160元.【解析】:(1)原来一天可获利:20×100=2000元;(2)①y=(20-x)(100+10x)=-10(x2-10x-200),由-10(x2-10x-200)=2160,解得:x1=2,x2=8,∴每件商品应降价2或8元;②观察图像可得20、(1)证明见解析;(2)BC=25;BF=【解析】(1)连接AE,利用直径所对的圆周角是直角,从而判定直角三角形,利用直角三角形两锐角相等得到直角,从而证明∠ABF=90°.(2)利用已知条件证得△AGC∽△ABF,利用比例式求得线段的长即可.(1)证明:连接AE,∵AB是⊙O的直径,∴∠AEB=90°,∴∠1+∠2=90°.∵AB=AC,∴∠1=∠CAB.∵∠CBF=∠CAB,∴∠1=∠CBF∴∠CBF+∠2=90°即∠ABF=90°∵AB是⊙O的直径,∴直线BF是⊙O的切线.(2)解:过点C作CG⊥AB于G.∵sin∠CBF=,∠1=∠CBF,∴sin∠1=,∵在Rt△AEB中,∠AEB=90°,AB=5,∴BE=AB•sin∠1=,∵AB=AC,∠AEB=90°,∴BC=2BE=2,在Rt△ABE中,由勾股定理得AE==2,∴sin∠2===,cos∠2===,在Rt△CBG中,可求得GC=4,GB=2,∴AG=3,∵GC∥BF,∴△AGC∽△ABF,∴=.∴BF==.21、(1)补全条形统计图见解析;“骑车”部分所对应的圆心角的度数为108°;(2)2人都是“喜欢乘车”的学生的概率为.【解析】
(1)从两图中可以看出乘车的有25人,占了50%,即可得共有学生50人;总人数减乘车的和骑车的人数就是步行的人数,根据数据补全直方图即可;要求扇形的度数就要先求出骑车的占的百分比,然后再求度数;(2)列出从这4人中选两人的所有等可能结果数,2人都是“喜欢乘车”的学生的情况有3种,然后根据概率公式即可求得.【详解】(1)被调查的总人数为25÷50%=50人;则步行的人数为50﹣25﹣15=10人;如图所示条形图,“骑车”部分所对应的圆心角的度数=×360°=108°;(2)设3名“喜欢乘车”的学生表示为A、B、C,1名“喜欢骑车”的学生表示为D,则有AB、AC、AD、BC、BD、CD这6种等可能的情况,其中2人都是“喜欢乘车”的学生有3种结果,所以2人都是“喜欢乘车”的学生的概率为.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22、-1≤x<4,在数轴上表示见解析.【解析】试题分析:分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.试题解析:,由①得,x<4;由②得,x⩾−1.故不等式组的解集为:−1⩽x<4.在数轴上表示为:23、(1)10,补图见解析;(2)众数是5,中位数是1;(3)活动时间不少于1天的学生人数大约有5400人.【解析】
(1)用1减去其他天数所占的百分比即可得到a的值,用310°乘以它所占的百分比,即可求出该扇形所对圆心角的度数;根据1天的人数和所占的百分比求出总人数,再乘以8天的人数所占的百分比,即可补全统计图;(2)根据众数和中位数的定义即可求出答案;(3)用总人数乘以活动时间不少于1天的人数所占的百分比即可求出答案.【详解】解:(1)扇形统计图中a=1﹣5%﹣40%﹣20%﹣25%=10%,该扇形所对圆心角的度数为310°×10%=31°,参加社会实践活动的天数为8天的人数是:×10%=10(人),补图如下:故答案为10;(2)抽样调查中总人数为100人,结合条形统计图可得:众数是5,中位数是1.(3)根据题意得:9000×(25%+10%+5%+20%)=5400(人),活动时间不少于1天的学生人数大约有5400人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24、1【解析】
分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:,解不等式①得:x≤3,解不等式②得:x>﹣2,所以不等式组的解集为:﹣2<x≤3,所以所有整数解的和为:﹣1+0+1+2+3=1.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.25、(1)证明见解析;(2)【解析】
(1)连接OD,根据角平分线的定义和等腰三角形的性质可得∠ADO=∠CAD,即可证明OD//AC,进而可得∠ODB=90°,即可得答案;(2)根据圆周角定理可得弧弧弧,即可证明∠BOD=60°,在中,利用∠BOD的正切值可求出BD的长,利用S阴影=S△BOD-S扇形DOE即可得答案.【详解】(1)连接∵平分,∴,∵,∴,∴,∴OD//AC,∴,∴又是的半径,∴是的切线(2)由题意得∵是弧的中点∴弧弧∵∴弧弧∴弧弧弧∴在中∵∴.【点睛】本题考查的是切线的判定、圆周角定理及扇形面积,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可;在同圆或等圆中,同弧或等弧所对的圆周角相等,都定义这条弧所对的圆心角的一半.熟练掌握相关定理及公式是解题关键.26、(1)证明见解析;(2);(3)证明见解析.【解析】
(1)根据等边对等角可得∠OAB=∠OBA,然后根据OA⊥CD得到∠OAB+∠AGC=90°,从而推出∠FBG+∠OBA=90°,从而得到OB⊥FB,再根据切线的定义证明即可.(2)根据两直线平行,内错角相等可得∠ACF=∠F,根据垂径定理可得CE=CD=a,连接OC,设圆的半径为r,表示出OE,然后利用勾股定理列式计算即可求出r.(3)连接BD,根据
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030年中国灯光工程行业市场现状分析与竞争战略研究报告
- 2025-2030年中国海苔市场竞争状况及投资发展前景分析报告
- 2025-2030年中国汽车清洁剂行业运营现状及发展规划分析报告
- 2025-2030年中国樱桃酒行业运行态势及发展策略分析报告
- 2025-2030年中国条形码行业竞争格局及发展前景预测报告
- 个人劳务临时合同范本
- 2025-2030年中国手术床行业发展状况及投资战略研究报告
- 科技发展对职场人际沟通的影响
- 2025-2030年中国家电维修行业前景规划及投资潜力分析报告
- 铁皮房合同范本
- 中班美工区角活动教案10篇
- 304不锈钢管材质证明书
- DBJ 46-027-2013 海南省建筑塔式起重机安装使用安全评定规程
- SJG 103-2021 无障碍设计标准-高清现行
- 皇冠假日酒店智能化系统安装工程施工合同范本
- 港口集装箱物流系统建模与仿真技术研究-教学平台课件
- 合肥市城市大脑·数字底座白皮书2020
- 杭州湾跨海大桥项目案例ppt课件
- (完整版)光荣榜25张模板
- 工业催化剂作用原理—金属氧化物催化剂
- 优秀教材推荐意见(真实的专家意见)
评论
0/150
提交评论