下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
基于YOLOv3的改进仪表检测算法Title:AModifiedYOLOv3-basedAlgorithmforInstrumentDetectionAbstract:Inrecentyears,objectdetectionhaswitnessedsubstantialprogressduetotheemergenceofdeeplearningtechniques.OneprominentobjectdetectionalgorithmisYouOnlyLookOnce(YOLO),whichhasgainedpopularityforitsreal-timeperformance.However,traditionalYOLOv3oftenfailstoachievesatisfactoryperformanceindetectingsmallobjectssuchasinstrumentsinvariousscenarios.Inthispaper,weproposeamodifiedYOLOv3-basedalgorithmforinstrumentdetection.Theproposedalgorithmaimstoimprovethedetectionaccuracyandefficiencywhilemaintainingreal-timeperformance.1.Introduction1.1BackgroundInstrumentdetectionplaysacriticalroleinvariousapplications,includinghealthcare,manufacturing,andautomation.Inthesescenarios,accuratelyidentifyingandlocalizinginstrumentsarenecessaryfordownstreamtasks.Therefore,thereisagrowingdemandforefficientandreliableinstrumentdetectionalgorithms.1.2MotivationDespitethesuccessofYOLOv3inobjectdetection,itoftenstruggleswiththedetectionofsmallobjects,suchasinstruments.Theseobjectstendtohavelowcontrast,intricateshapes,andsmallsizes,whichmakethemchallengingtodetectaccurately.Moreover,thereal-timeperformanceofYOLOv3canbecompromisedundersuchcircumstances.Hence,amodifiedversionofYOLOv3specificallydesignedforinstrumentdetectionisrequired.2.Methodology2.1YOLOv3OverviewAbriefexplanationoftheoriginalYOLOv3algorithm,includingitsarchitectureandkeycomponents,ispresentedinthissection.Thisservesasthefoundationfortheproposedmodifications.2.2ProposedModificationsToenhancetheinstrumentdetectioncapabilityofYOLOv3,weproposethefollowingmodifications:-FeaturePyramidNetwork(FPN):WeintegratetheFPNintotheYOLOv3architecturetoimprovetheabilitytodetectobjectsatdifferentscales.ThisaddressesthecommonissueofsmallinstrumentdetectioninYOLOv3.-AnchorOptimization:Weproposeanovelanchoroptimizationmethodtoadjusttheanchorscalesandaspectratiostobetteralignwiththecharacteristicsofinstrumentobjects.Thishelpscaptureinstrumentobjectswithgreateraccuracy.-DataAugmentation:Weintroducevariousdataaugmentationtechniques,suchasrotation,translation,andscalechanges,toincreasethediversityoftrainingdata.Thisfurtherimprovesthemodel'sgeneralizationabilityandrobustnesstodifferentinstrumenttypesandorientations.3.ExperimentalEvaluation3.1DatasetPreparationWecollectandannotateadatasetspecificallydesignedforinstrumentdetection.Thedatasetincludesvarioustypesofinstrumentswitharangeofsizes,orientations,andlightingconditions.Additionally,wesplitthedatasetintotraining,validation,andtestingsubsets.3.2ExperimentalSetupWeconductexperimentsonahigh-performancecomputingplatformequippedwithaGPUtoevaluatetheproposedalgorithm'sperformance.WecompareitwithboththeoriginalYOLOv3andotherstate-of-the-artinstrumentdetectionalgorithmstodemonstratetheeffectivenessofourmodifications.3.3PerformanceEvaluationWeusevariousevaluationmetricssuchasprecision,recall,andmeanAveragePrecision(mAP)toassesstheproposedalgorithm'sperformance.Theevaluationisperformedonthetestingsubsetofthedataset.4.ResultsandDiscussionWepresentanddiscusstheexperimentalresultsinthissection.Theperformancecomparisonbetweentheproposedalgorithmandexistingtechniquesunderscoresitssuperiorityininstrumentdetection,particularlyindetectingsmallandintricateinstrumentobjects.5.ConclusionsInthispaper,weproposedamodifiedYOLOv3-basedalgorithmforinstrumentdetection.Theproposedmodificationsaimedtoenhancethedetectionaccuracyandefficiencywhilemaintainingreal-timeperformance.ExperimentalresultsdemonstratedthatouralgorithmoutperformstheoriginalYOLOv3andotherstate-of-the-artalgorithmsininstrumentdetection,especiallyforsmallandintricateinstruments.ThemodifiedYOLOv3algorithmshowspromiseforpracticalapplicationsinhealthcare,manufacturing,andautomation.References:[List
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年代理房源出租出售合同范本
- 医疗质控交流
- 传染病防控业务培训
- 2024至2030年中国平面鼓数据监测研究报告
- 2024至2030年中国闪动式可调型温控器数据监测研究报告
- 2023年中频转杯纺纱机项目成效分析报告
- 2023年智能体脂秤项目评估分析报告
- 2024至2030年中国自走式双切流联合收割机行业投资前景及策略咨询研究报告
- 2024至2030年中国管道全移动式喷灌系统数据监测研究报告
- 2024至2030年中国电话自动拨号报警器数据监测研究报告
- 数据编码第二课时课件高中信息技术教科版必修1
- 2.贵州省地方标准项目申报书
- 小学三年级一位数乘两位数的乘法练习题(500道)
- “读思达”教学法在整本书阅读教学中的实践
- 老旧小区燃气管道改造方案
- 生产制造企业车间管理实务课程
- 医院护理质控工作汇报
- 新HSK1-6词汇大纲文档
- 销售部职能说明样本
- 医院保密工作培训课件
- 老年人中常见呼吸系统疾病的诊断与治疗
评论
0/150
提交评论