山东省菏泽市侨联中学2022-2023学年高一数学文下学期期末试卷含解析_第1页
山东省菏泽市侨联中学2022-2023学年高一数学文下学期期末试卷含解析_第2页
山东省菏泽市侨联中学2022-2023学年高一数学文下学期期末试卷含解析_第3页
山东省菏泽市侨联中学2022-2023学年高一数学文下学期期末试卷含解析_第4页
山东省菏泽市侨联中学2022-2023学年高一数学文下学期期末试卷含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省菏泽市侨联中学2022-2023学年高一数学文下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.函数的图象的一个对称中心为()A. B. C. D.参考答案:C【分析】根据正切函数的对称中心为,可求得函数y图象的一个对称中心.【详解】由题意,令,,解得,,当时,,所以函数的图象的一个对称中心为.故选:C.【点睛】本题主要考查了正切函数的图象与性质的应用问题,其中解答中熟记正切函数的图象与性质,准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.2.一个扇形的弧长与面积的数值都是6,这个扇形中心角的弧度数是()A.1 B.2 C.3 D.4参考答案:C【考点】G8:扇形面积公式;G7:弧长公式.【分析】先根据扇形面积公式S=lr,求出r=2,再根据求出α.【解答】解:设扇形的半径为r,中心角为α,根据扇形面积公式S=lr得6=,∴r=2,又扇形弧长公式l=r?α,∴.故选C【点评】本题考查弧度制下扇形弧长、面积公式.牢记公式是前提,准确计算是保障.3.某几何体的三视图如图所示,则该几何体的体积为()A.12 B.18C.24 D.30参考答案:C试题分析:由三视图可知,几何体是三棱柱消去一个同底的三棱锥,如图所示,三棱柱的高为5,消去的三棱锥的高为3,三棱锥与三棱柱的底面为直角边长分别为3和4的直角三角形,所以几何体的体积为,故选C.考点:几何体的三视图及体积的计算.【方法点晴】本题主要考查了几何体的三视图的应用及体积的计算,着重考查了推理和运算能力及空间想象能力,属于中档试题,解答此类问题的关键是根据三视图的规则“长对正、宽相等、高平齐”的原则,还原出原几何体的形状,本题的解答的难点在于根据几何体的三视图还原出原几何体和几何体的度量关系,属于中档试题.4.已知函数有唯一零点,则负实数a=(

)A.

B.

C.-3

D.-2参考答案:C注意到直线是和的对称轴,故是函数的对称轴,若函数有唯一零点,零点必在处取得.,解得.

5.下列说法中,正确的是

)A.任何一个集合必有两个子集B.若则中至少有一个为C.任何集合必有一个真子集

D.若为全集,且则参考答案:D略6.已知正数x、y满足,则的最小值为(

)A.2 B. C. D.5参考答案:B【分析】由得,再将代数式与相乘,利用基本不等式可求出的最小值.【详解】,所以,,则,所以,,当且仅当,即当时,等号成立,因此,的最小值为,故选:.【点睛】本题考查利用基本不等式求最值,对代数式进行合理配凑,是解决本题的关键,属于中等题.7.如图:直线L1的倾斜角1=300,直线L1L2,则L2的斜率为(

)A.B.C.D.参考答案:C略8.若且,则A. B. C. D.参考答案:B9.容器A中有升水,将水缓慢注入空容器B,经过t分钟时容器A中剩余水量y满足指数型函数为自然对数的底数,为正常数),若经过5分钟时容器A和容器B中的水量相等,经过n分钟容器A中的水只有,则n的值为

A.7

B.8

C.9

D.10参考答案:D10.已知α∈(0,),sin(α+)=,则cos(-α)=()A. B.C.D.参考答案:B【考点】三角函数的化简求值.【分析】根据诱导公式,则=sin[]即可得答案.【解答】解:由题意,利用诱导公式,可得=sin[]∵,则sin[]=sin()=.故选B.二、填空题:本大题共7小题,每小题4分,共28分11.求值:=__________。参考答案:12.三个数的最大公约数是_________________。参考答案:2413.函数在区间上的最小值为

.参考答案:114.函数f(x)=的值域是________.参考答案:(0,+∞)15.已知等差数列{an},满足,其中P,P1,P2三点共线,则数列{an}的前16项和_____.参考答案:8【分析】根据平面向量基本定理先得到,再由等差数列的性质,以及求和公式,即可求出结果.【详解】因为,其中,,三点共线,所以;因为为等差数列,所以,因此数列的前项和.故答案为8【点睛】本题主要考查求数列的前项和,熟记平面向量基本定理,等差数列的性质以及求和公式即可,属于常考题型.16.(5分)[x]表示不超过x的最大整数,定义函数f(x)=x﹣[x].则下列结论中正确的有

①函数f(x)的值域为[0,1];②方程f(x)=有无数个解③函数f(x)的图象是一条直线;

④函数f(x)是R上的增函数.参考答案:②考点: 命题的真假判断与应用;函数的值域;函数单调性的判断与证明;函数的零点.专题: 新定义.分析: 在解答时要先充分理解[x]的含义,从而可知针对于选项注意对新函数的最值、单调性以及周期性加以分析即可.解答: ∵函数f(x)的定义域为R,又∵f(x+1)=(x+1)﹣[x+1]=x﹣[x]=f(x),∴函数{x}=x﹣[x]是周期为1的函数,每隔一个单位重复一次,所以方程f(x)=有无数个解,故②正确;当0≤x<1时,f(x)=x﹣[x]=x﹣0=x,∴函数{x}的值域为[0,1),故①错误;函数{x}是周期为1的函数,∴函数{x}不是单调函数,当然图象也不可能为一条直线,故③④错误.故答案为:②点评: 本题考查分段函数知识和函数值域等性质的综合类问题,属中档题.17.函数f(x)的定义域为(﹣∞,﹣1)∪(1,+∞),且f(x+1)为奇函数,当x>1时,f(x)=2x2﹣12x+16,则函数y=f(x)﹣2的所有零点之和是.参考答案:5【考点】函数零点的判定定理;函数奇偶性的性质.【专题】计算题;函数的性质及应用.【分析】f(x+1)为奇函数可得函数f(x)的图象关于(1,0)对称,从而可求x<1时的函数解析式,进而解方程f(x)=2可得.【解答】解:∵f(x+1)为奇函数,∴函数图象关于(0,0)对称,即函数f(x)的图象关于(1,0)对称∵当x>1时,f(x)=2x2﹣12x+16,当x<1时,f(x)=﹣2x2﹣4x令2x2﹣12x+16=2,即x2﹣6x+7=0,可得x1+x2=6,令﹣2x2﹣4x=2,即x2+2x+1=0,可得x3=﹣1∴横坐标之和为x1+x2+x3=6﹣1=5故答案为:5.【点评】本题主要考查了函数的平移、奇函数的对称性,利用对称性求函数在对称区间上的解析式.考查性质的灵活应用.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知定义在上的奇函数,且时,.(1)求在上的解析式;(2)判断在上的单调性,并用定义证明。参考答案:(1)时,

为奇函数,

(2)设,则,,,

,在(0,2)上位减函数19.(本小题满分14分)

已知函数在R上奇函数。(1)求;(2)对,不等式恒成立,求实数的取值范围;(3)令,若关于的方程有唯一实数解,求实数的取值范围。参考答案:20.已知等比数列{an}满足a1=2,a2=4(a3﹣a4),数列{bn}满足bn=3﹣2log2an.(1)求数列{an},{bn}的通项公式;(2)令cn=,求数列{cn}的前n项和Sn;(3)若λ>0,求对所有的正整数n都有2λ2﹣kλ+2>a2nbn成立的k的取值范围.参考答案:【分析】(1)设等比数列{an}的公比为q,根据a1=2,a2=4(a3﹣a4),可得a2=4a2(q﹣q2),化简解得q.可得an.利用对数的运算性质可得bn.(2)cn===.利用错位相减法与等比数列的求和公式即可得出.(3)不等式2λ2﹣kλ+2>a2nbn,即2λ2﹣kλ+2>22﹣2n?(2n﹣1),令dn=22﹣2n?(2n﹣1),通过作差可得:dn+1<dn,即数列{dn}单调递减,因此n=1时dn取得最大值d1=1.根据对所有的正整数n都有2λ2﹣kλ+2>a2nbn成立,可得2λ2﹣kλ+2>1,根据λ>0.可得k<2,再利用基本不等式的性质即可得出.【解答】解:(1)设等比数列{an}的公比为q,∵a1=2,a2=4(a3﹣a4),∴a2=4a2(q﹣q2),化为:4q2﹣4q+1=0,解得q=.∴an==22﹣n.∴bn=3﹣2log2an=3﹣2(2﹣n)=2n﹣1.(2)cn===.∴数列{cn}的前n项和Sn=[2+3?22+5×23+…+(2n﹣1)?2n],∴2Sn=[22+3?23+…+(2n﹣3)?2n+(2n﹣1)?2n+1],∴﹣Sn==,可得:Sn=.(3)不等式2λ2﹣kλ+2>a2nbn,即2λ2﹣kλ+2>22﹣2n?(2n﹣1),令dn=22﹣2n?(2n﹣1),则dn+1﹣dn=﹣==<0,因此dn+1<dn,即数列{dn}单调递减,因此n=1时dn取得最大值d1=1.∵对所有的正整数n都有2λ2﹣kλ+2>a2nbn成立,∴2λ2﹣kλ+2>1,∵λ>0.∴k<2,∵2≥2=2,当且仅当λ=时取等号.∴.即k的取值范围是.【点评】本题考查了等比数列的通项公式与求和公式、数列的单调性、基本不等式的性质、错位相减法,考查了推理能力与计算能力,属于难题.21.(本小题满分20分)已知函数f(x)=2x+alnx(1)若a<0,证明:对于任意两个正数x1,x2,总有≥f()成立;(2)若对任意x∈[1,e],不等式f(x)≤(a+3)x-x2恒成立,求a的取值范围。参考答案:解析:(I).………(5分)因为

所以,

,又,

故,所以,;…(10分)(Ⅱ)因为对恒成立,故,

,因为,所以,因而

,……(15分)设

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论