版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省南平市茶富中学高一数学理测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.(5分)已知图(2)是图(1)所示几何体的三视图,其中俯视图是个半圆,则图(1)所示几何体的表面积为() A. π B. π+ C. π+ D. π+参考答案:C考点: 由三视图求面积、体积.专题: 计算题;空间位置关系与距离.分析: 三视图复原可知几何体是圆锥的一半,根据三视图数据,求出几何体的表面积.解答: 由题目所给三视图可得,该几何体为圆锥的一半,那么该几何体的表面积为该圆锥表面积的一半与轴截面面积的和.又该半圆锥的侧面展开图为扇形,所以侧面积为×π×1×2=π,底面积为π,观察三视图可知,轴截面为边长为2的正三角形,所以轴截面面积为×2×2×=,则该几何体的表面积为:π+.故选:C点评: 本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.2.已知函数的零点为,函数的最小值为,且,则函数的零点个数是(
)A.2或3
B.3或4
C.3
D.4参考答案:A3.下列各式不能化简为的是
()A.
B.C.
D.参考答案:C略4.已知函数,则的值是(
)A.-2 B.1 C.0 D.2参考答案:B【分析】由分段函数的解析式,结合分段条件,代入即可求解.【详解】由题意,函数,可得.故选:B.【点睛】本题主要考查了分段函数的求值问题,其中解答中熟练应用分段函数的解析式,结合分段条件,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.5.等比数列,…的第四项等于(
)A.-24 B.0 C.12 D.24参考答案:A由x,3x+3,6x+6成等比数列得选A.考点:该题主要考查等比数列的概念和通项公式,考查计算能力.6.在中,边所对的角分别为,若,则(
)A.
B.
C.
D.参考答案:C7.已知点A(-1,2),B(2,-2),C(0,3),若点M(a,b)是线段AB上的一点(a≠0),则直线CM的斜率的取值范围是(
)A.[,1]
B.[,0)∪(0,1]
C.[-1,]
D.(-∞,]∪[1,+∞)参考答案:D8.当越来越大时,下列函数中,增长速度最快的是(
)A.
B.
C.
D.参考答案:D试题分析:指数函数增长趋势最快,所以选D.考点:指数函数单调性9.已知,,则
(
)A
B
C
D
参考答案:A略10.下面给出3个论断:①{0}是空集;
②若;③集合是有限集。其中正确的个数为(
)A.0
B.1
C.2
D.3参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.设集合则
参考答案:{1,2,3,4}12.函数的最小正周期是____.参考答案:π【分析】将三角函数化简为标准形式,再利用周期公式得到答案.【详解】由于所以【点睛】本题考查了三角函数的化简,周期公式,属于简单题.13.在△ABC中,AB=4,AC=3,∠A=60°,D是AB的中点,则?=
.参考答案:6【考点】9R:平面向量数量积的运算.【分析】由AB=4,AC=3,∠A=60°,可得.由D是AB的中点,可得.代入?即可得出.【解答】解:∵D是AB的中点,∴.又AB=4,AC=3,∠A=60°,∴=6.∴?===9﹣3=6.故答案为:6.14.已知向量,且,则___________.参考答案:【分析】把平方,将代入,化简即可得结果.【详解】因为,所以,,故答案为.【点睛】本题主要考查向量的模及平面向量数量积公式,属于中档题.平面向量数量积公式有两种形式,一是,二是,主要应用以下几个方面:(1)求向量的夹角,(此时往往用坐标形式求解);(2)求投影,在上的投影是;(3)向量垂直则;(4)求向量的模(平方后需求).15.①设a,b是两个非零向量,若|a+b|=|a-b|,则a·b=0②若③在△ABC中,若,则△ABC是等腰三角形④在中,,边长a,c分别为a=4,c=,则只有一解。上面说法中正确的是
参考答案:①②16.设向量,,若,t=__________.参考答案:【分析】根据向量垂直的坐标表示得到方程,求参即可.【详解】向量,,若,则故答案为:.17.函数的值域是___________.参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数f(x)是定义在R上的偶函数,且当x≥0时,f(x)=x2+2x.(1)写出函数f(x)在x∈R的解析式;(2)若函数g(x)=f(x)﹣2ax+2(x∈[1,2]),求函数g(x)的最小值.参考答案:考点:函数奇偶性的性质;函数解析式的求解及常用方法.专题:函数的性质及应用.分析:(1)根据函数f(x)是定义在R上的偶函数,f(﹣x)=f(x),且当x≥0时f(x)=x2+2x.可求出x<0时函数f(x)的解析式,综合可得函数f(x)的解析式(2)根据(1)可得函数g(x)的解析式,结合二次函数的图象和性质,对a进行分类讨论,进而可得函数g(x)的最小值的表达式.解答:解:(1)当x<0时,﹣x>0,∵函数f(x)是偶函数,故f(﹣x)=f(x),且当x≥0时,f(x)=x2+2x…(2分)所以f(x)=f(﹣x)=(﹣x)2+2(﹣x)=x2﹣2x,…(4分)所以f(x)=,(2)∵g(x)=f(x)﹣2ax+2=x2+2(1﹣a)x+2的图象开口朝上且以直线x=a﹣1为对称,又∵x∈[1,2],当a﹣1≤1时,g(x)在[1,2]上为增函数,故当x=1时,g(x)取最小值5﹣2a,当1<a﹣1≤2时,g(x)在[1,a﹣1]上为减函数,在[a﹣1,2]上为增函数,故当x=a﹣1时,g(x)取最小值﹣a2+2a+1,当a﹣1>2时,g(x)在[1,2]上为减函数,故当x=2时,g(x)取最小值10﹣4a,综上:函数g(x)的最小值为点评:本题考查的知识点是函数奇偶性的性质,函数解析式的求法,二次函数在定区间上的最值问题,是二次函数图象与性质与奇偶性的综合考查,难度不大,属于基础题.19.△ABC的内角A,B,C所对边分别为a,b,c,已知.(1)求C;(2)若,,求△ABC的面积.参考答案:(1);(2)5.【分析】(1)根据正弦定理得,化简即得C的值;(2)先利用余弦定理求出a的值,再求的面积.【详解】(1)因为,根据正弦定理得,又,从而,由于,所以.(2)根据余弦定理,而,,,代入整理得,解得或(舍去).故△ABC的面积为.【点睛】本题主要考查正弦余弦定理解三角形,考查三角形面积的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.20.函数的定义域为(0,1(a为实数).(1)当时,求函数的值域.(2)若函数在定义域上是减函数,求a的取值范围.(3)求函数在上的最大值及最小值.参考答案:解:(1)当时,(2)若在定义域上是减函数,则任取且都有成立,即 只要即可 由且故(3)当时,函数在上单调递增,无最小值,当时,由(2)得当时,在上单调递减,无最大值,当时,当时,此时函数在上单调递减,在上单调递增,无最大值,略21.已知函数f(x)=
(b<0)的值域是[1,3],(1)求b、c的值;(2)判断函数F(x)=lgf(x),当x∈[-1,1]时的单调性,并证明你的结论;(3)若t∈R,求证:lg≤F(|t-|-|t+|)≤lg.参考答案:(1)解:设y=,则(y-2)x2-bx+y-c=0
①∵x∈R,∴①的判别式Δ≥0,即b2-4(y-2)(y-c)≥0,即4y2-4(2+c)y+8c-b2≤0
②由条件知,不等式②的解集是[1,3]∴1,3是方程4y2-4(2+c)y+8c-b2=0的两根∴c=2,b=-2,b=2(舍)(2)任取x1,x2∈[-1,1],且x2>x1,则x2-x1>0,且(x2-x1)(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《基本医疗保险对流动老人健康的影响研究》
- 《参泽舒肝胶囊治疗非酒精性脂肪性肝炎(瘀血湿热内阻证)的临床疗效观察》
- 2024年安置房买卖合同中的售后服务
- 《积极老龄化视角下农村互助养老模式继续推广问题研究》
- 《苏木提取物对PI3K-Akt-mTOR信号通路介导的细胞自噬的影响》
- 2024年度保险合同保险范围
- 《先秦文论范畴生成土壤和来源的考察》
- 2024年聊城考客运资格证
- 2024年银川客运资格证应用能力考试答案
- 2024年广州客运从业资格证模拟考试题库下载电子版
- 雅鲁藏布江大拐弯巨型水电站规划方案
- 广西基本医疗保险门诊特殊慢性病申报表
- 城市经济学习题与答案
- 国开成本会计第14章综合练习试题及答案
- 幼儿园大班科学:《树叶为什么会变黄》课件
- 1到50带圈数字直接复制
- 铁路工程施工组织设计(施工方案)编制分类
- 幼儿园中班数学《有趣的图形》课件
- 《规划每一天》教案2021
- 草莓创意主题实用框架模板ppt
- 山大口腔颌面外科学课件第5章 口腔种植外科-1概论、口腔种植的生物学基础
评论
0/150
提交评论