版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2018北京卷高考压轴卷数学(理)本试卷共150分。考试时长120分钟。考生务必将答案答在答题纸上,在试卷上作答无效。考试结束后,将答题纸交回。第一部分(选择题,共40分)选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.(1)已知集合A={x|0<x≤3,x∈N},B={x|y=},则集合A∩(∁RB)=()A.{1,2} B.{1,2,3} C.{0,1,2} D.(0,1)(2)以下说法正确的有()(1)y=x+(x∈R)最小值为2;(2)a2+b2≥2ab对a,b∈R恒成立;(3)a>b>0且c>d>0,则必有ac>bd;(4)命题“∃x∈R,使得x2+x+1≥0”的否定是“∀x∈R,使得x2+x+1≥0”;(5)实数x>y是<成立的充要条件;(6)设p,q为简单命题,若“p∨q”为假命题,则“¬p∨¬q”也为假命题.A.2个 B.3个 C.4个 D.5个(3)若双曲线C:(,)的一条渐近线被圆所截得的弦长为2,则双曲线C的离心率为A.2B.C.D.(4)已知,函数的部分图象如图所示,则函数图象的一个对称中心是A. B. C. D.(5)如图,在平行四边形ABCD中,∠BAD=,AB=2,AD=1,若M、N分别是边BC、CD上的点,且满足,其中λ∈[0,1],则的取值范围是()A.[0,3] B.[1,4] C.[2,5] D.[1,7](6)一个几何体的三视图如图所示,则这个几何体的体积为()(A)(B)(C)8(D)(7)阅读右面的程序框图,运行相应的程序,若输入N的值为24,则输出N的值为(A)0(B)1(C)2(D)3(8)已知函数设,若关于x的不等式在R上恒成立,则a的取值范围是(A) (B) (C) (D)第二部分(非选择题,共110分)二、填空题共6小题,每小题5分,共30分.(9)已知是实数,是虚数单位,若是纯虚数,则.(10)某篮球学校的甲、乙两名运动员练习罚球,每人练习10组,每组罚球40个.命中个数的茎叶图如下.则罚球命中率较高的是.(11)抛物线的准线与轴交于点P,直线l经过点P,且与抛物线有公共点,则直线l的倾斜角的取值范围是___________.(12)若两曲线与存在公切线,则正实数的取值范围是.(13)设是等差数列的前项和,若,,则数列的最大项是第 项.(14)已知函数满足对任意的都有成立,则=。三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.(15)(本小题13分)已知函数f(x)=2sin(ax﹣)cos(ax﹣)+2cos2(ax﹣)(a>0),且函数的最小正周期为.(Ⅰ)求a的值;(Ⅱ)求f(x)在[0,]上的最大值和最小值.(16)(本小题13分)如图,已知长方形ABCD中,AB=2,AD=,M为DC的中点,将△ADM沿AM折起,使得平面ADM⊥平面ABCM.(1)求证:AD⊥BM;(2)若点E是线段DB上的一动点,问点E在何位置时,二面角E﹣AM﹣D的余弦值为.(17)(本小题14分)诚信是立身之本,道德之基,某校学生会创设了“诚信水站”,既便于学生用水,又推进诚信教育,并用“”表示每周“水站诚信度”,为了便于数据分析,以四周为一周期,如表为该水站连续十二周(共三个周期)的诚信数据统计:第一周第二周第三周第四周第一个周期95%98%92%88%第二个周期94%94%83%80%第三个周期85%92%95%96%(1)计算表中十二周“水站诚信度”的平均数;(2)分别从表中每个周期的4个数据中随机抽取1个数据,设随机变量X表示取出的3个数据中“水站诚信度”超过91%的数据的个数,求随机变量X的分布列和期望;(3)已知学生会分别在第一个周期的第四周末和第二个周期的第四周末各举行了一次“以诚信为本”的主题教育活动,根据已有数据,说明两次主题教育活动的宣传效果,并根据已有数据陈述理由.(18)(本小题13分)已知函数f(x)=ex+x2﹣x,g(x)=x2+ax+b,a,b∈R.(Ⅰ)当a=1时,求函数F(x)=f(x)﹣g(x)的单调区间;(Ⅱ)若曲线y=f(x)在点(0,1)处的切线l与曲线y=g(x)切于点(1,c),求a,b,c的值;(Ⅲ)若f(x)≥g(x)恒成立,求a+b的最大值.(19)(本小题14分)设椭圆的离心率,左焦点为,右顶点为,过点的直线交椭圆于两点,若直线垂直于轴时,有(1)求椭圆的方程;(2)设直线:上两点,关于轴对称,直线与椭圆相交于点(异于点),直线与轴相交于点.若的面积为,求直线的方程.(20)(本小题13分)对于数列A:a1,a2,…,an,若满足ai∈{0,1}(i=1,2,3,…,n),则称数列A为“0﹣1数列”.若存在一个正整数k(2≤k≤n﹣1),若数列{an}中存在连续的k项和该数列中另一个连续的k项恰好按次序对应相等,则称数列{an}是“k阶可重复数列”,例如数列A:0,1,1,0,1,1,0.因为a1,a2,a3,a4与a4,a5,a6,a7按次序对应相等,所以数列{an}是“4阶可重复数列”.(Ⅰ)分别判断下列数列A:1,1,0,1,0,1,0,1,1,1.是否是“5阶可重复数列”?如果是,请写出重复的这5项;(Ⅱ)若项数为m的数列A一定是“3阶可重复数列”,则m的最小值是多少?说明理由;(III)假设数列A不是“5阶可重复数列”,若在其最后一项am后再添加一项0或1,均可使新数列是“5阶可重复数列”,且a4=1,求数列{an}的最后一项am的值.数学(理)试卷答案及评分参考一、选择题共8小题,每小题5分,共40分.1【答案】A【解析】∵集合A={x|0<x≤3,x∈N}={1,2,3},B={x|y=}={x|x≤﹣3或x≥3},∴CRA={x|﹣3<x<3},集合A∩(∁RB)={1,2}.故选:A.2【答案】A【解析】(1)当x<0时函数,无最小值,故(1)错误;(2)∵a2+b2﹣2ab=(a﹣b)2≥0对任意实数a,b都成立,∴a2+b2≥2ab对任意实数a,b恒成立,故(2)正确;(3)根据不等式的性质易知(3)正确;(4)根据特称命题的否定形式知,命题“∃x∈R,使得x2+x+1≥0”的否定应为“∀x∈R,x2+x+1<0”,故(4)错误;(5)取x=1,y=﹣1满足x>y,但,故(5)错误;(6)若p∨q为假命题,则p,q都为假命题,所以¬p,¬q都为真命题,所以¬p∨¬q为真命题,故(6)错误.综上可得正确命题为(2)(3).故选A.3【答案】A4【答案】C【解析】,.又.显然,所以.则,令,则,当时,,故C项正确.5【答案】C【解析】建立如图所示的直角坐标系,则B(2,0),A(0,0),D(,).∵,λ∈[0,1],=+λ=+λ=M(2+,λ),即M(2+,λ);==+(﹣λ)=(,)+(1﹣λ)•(2,0)=(﹣2λ,),即N(﹣2λ,).所以=(2+,λ)•(﹣2λ,)=﹣λ2﹣2λ+5=﹣(λ+1)2+6.因为λ∈[0,1],二次函数的对称轴为:λ=﹣1,故当λ∈[0,1]时,﹣λ2﹣2λ+5∈[2,5].故选:C.6【答案】B7【答案】C【解析】依次为,,输出,选C.8【答案】A【解析】不等式f(x)≥为-f(x)≤≤f(x)(*)当x≤1时,(*)式即为-x2+x-3≤≤x2-x+3,-x2+-3≤a≤x2-+3,又-x2+-3=-(x-)2-≤-(x=时取等号)x2-+3=(x-)2+≥(x=时取等号)所以-≤a≤当x>1时,(*)式为-x-≤≤x+,--≤a≤+又--=-(+)≤(当x=时取等号)+≥(当x=2时取等号)所以≤a≤2,综上-≤a≤2.故选A.二、填空题共6小题,每小题5分,共30分.9【答案】110【答案】甲11【答案】【解析】12【答案】13【答案】1314【答案】7三、解答题共6小题,共80分.15.(本小题13分)【答案】解:(Ⅰ)函数f(x)=2sin(ax﹣)cos(ax﹣)+2cos2(ax﹣)(a>0),化简可得:f(x)=sin(2ax﹣)+cos(2ax﹣)+1=cos2ax+sin2ax+1=2sin(2ax+)+1∵函数的最小正周期为.即T=,由T=,可得a=2.∴a的值为2.故f(x)=2sin(4x+)+1;(Ⅱ)x∈[0,]时,4x+∈[0,].当4x+=时,函数f(x)取得最小值为=1.当4x+=时,函数f(x)取得最大值为2×1+1=3∴f(x)在[0,]上的最大值为3,最小值为1.【解析】(Ⅰ)利用二倍角以及辅助角公式基本公式将函数化为y=Asin(ωx+φ)的形式,再利用周期公式求a的值.(Ⅱ)x∈[0,]时,求出内层函数的取值范围,结合三角函数的图象和性质求,可求f(x)最大值和最小值.16.(本小题13分)【答案】(1)证明:∵长方形ABCD中,AB=2,AD=,M为DC的中点,∴AM=BM=2,则AM⊥BM,∵平面ADM⊥平面ABCM,平面ADM∩平面ABCM=AM,BM⊂平面ABCM,∴BM⊥平面ADM,∵AD⊂平面ADM,∴AD⊥BM;(2)解:取M中点O,连接DO,则DO⊥平面ABCM,以O为原点,建立如图所示空间直角坐标系,则平面ADM的一个法向量为,设,,.设平面AME的一个法向量为,则,取y=1,得.由cos<>=,解得.∴E为BD上靠近D点的处.【解析】(1)在长方形ABCD中,AB=2,AD=,M为DC的中点,可得AM=BM=2,则AM⊥BM,由线面垂直的判定可得BM⊥平面ADM,则AD⊥BM;(2)取M中点O,连接DO,则DO⊥平面ABCM,以O为原点,建立如图所示空间直角坐标系,则平面ADM的一个法向量为,设,则,,求出平面AME的一个法向量为,利用二面角E﹣AM﹣D的余弦值为求得λ值可得E的位置.17.(本小题14分)【答案】解:(1)表中十二周“水站诚信度”的平均数:=×=91%.(2)随机变量X的可能取值为0,1,2,3,P(X=0)==,P(X=1)==,P(X=2)=,P(X=3)=,∴X的分布列为:X0123PEX==2.(3)两次活动效果均好.理由:活动举办后,“水站诚信度”由88%→94%和80%到85%看出,后继一周都有提升.【解析】(1)利用平均数公式能求出表中十二周“水站诚信度”的平均数.(2)随机变量X的可能取值为0,1,2,3,分别求出相应的概率,由此能求出X的分布列和数学期望.(3)两次活动效果均好,活动举办后,“水站诚信度”由88%→94%和80%到85%看出,后继一周都有提升.18.(本小题13分)【答案】(Ⅰ)F(x)=ex﹣2x﹣b,则F'(x)=ex﹣2.令F'(x)=ex﹣2>0,得x>ln2,所以F(x)在(ln2,+∞)上单调递增.令F'(x)=ex﹣2<0,得x<ln2,所以F(x)在(﹣∞,ln2)上单调递减.…(Ⅱ)因为f'(x)=ex+2x﹣1,所以f'(0)=0,所以l的方程为y=1.依题意,,c=1.于是l与抛物线g(x)=x2﹣2x+b切于点(1,1),由12﹣2+b=1得b=2.所以a=﹣2,b=2,c=1.…(Ⅲ)设h(x)=f(x)﹣g(x)=ex﹣(a+1)x﹣b,则h(x)≥0恒成立.易得h'(x)=ex﹣(a+1).(1)当a+1≤0时,因为h'(x)>0,所以此时h(x)在(﹣∞,+∞)上单调递增.①若a+1=0,则当b≤0时满足条件,此时a+b≤﹣1;②若a+1<0,取x0<0且,此时,所以h(x)≥0不恒成立.不满足条件;(2)当a+1>0时,令h'(x)=0,得x=ln(a+1).由h'(x)>0,得x>ln(a+1);由h'(x)<0,得x<ln(a+1).所以h(x)在(﹣∞,ln(a+1))上单调递减,在(ln(a+1),+∞)上单调递增.要使得“h(x)=ex﹣(a+1)x﹣b≥0恒成立”,必须有:“当x=ln(a+1)时,h(x)min=(a+1)﹣(a+1)ln(a+1)﹣b≥0”成立.所以b≤(a+1)﹣(a+1)ln(a+1).则a+b≤2(a+1)﹣(a+1)ln(a+1)﹣1.令G(x)=2x﹣xlnx﹣1,x>0,则G'(x)=1﹣lnx.令G'(x)=0,得x=e.由G'(x)>0,得0<x<e;由G'(x)<0,得x>e.所以G(x)在(0,e)上单调递增,在(e,+∞)上单调递减,所以,当x=e时,G(x)max=e﹣1.从而,当a=e﹣1,b=0时,a+b的最大值为e﹣1.综上,a+b的最大值为e﹣1.19.(本小题14分)【答案】(1)设,因为所以有,又由得,且,得,因此椭圆的方程为:.(2)设直线的方程为,与直线的方程联立,可得点,故.将与联立,消去,整理得,解得,或.由点异于点,可得点.由,可得直线的方程为,令,解得,故.所以.又因为的面积为,故,整理得,解得,所以.所以,直线的方程为,或.20.(本小题13分)【答案】解:(Ⅰ)是“5阶可重复数列”,10101.….(Ⅱ)因为数列{an}的每一项只可以是0或1,所以连续3项共有23=8种不同的情形.若m=11,则数列{an}中有9组连续3项,则这其中至少有两组按次序对应相等,即项数为11的数列{an}一定是“3阶可重复数列”;若m=10,数列0,0,1,0,1,1,1,0,0,0不是“3阶可重复数列”;则3≤m<10时,均存在不是“3阶可重复数列”的数列{an}.所以,要使数列{an}一定是“3阶可重复数列”,则m的最小值是11.….(III)由于数列{an}在其最后一项am后再添加一项0或1,均可使新数列是“5阶可重复数列”,即在数列{an}的末项am后再添加一项0或1,则存在i≠j,使得ai,ai+1,ai+2,ai+3,ai+4与am﹣3,am﹣2,am﹣1,am,0按次序对应相等,或aj,aj+1,aj+2,aj+3,aj+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东外语外贸大学《营养生理学》2023-2024学年第一学期期末试卷
- 广东司法警官职业学院《别墅建筑设计》2023-2024学年第一学期期末试卷
- 广东生态工程职业学院《西方经济学(下)》2023-2024学年第一学期期末试卷
- 七年级上册《6.2.1直线、射线、线段》课件与作业
- 广东南华工商职业学院《色彩静物及人物头像》2023-2024学年第一学期期末试卷
- 广东梅州职业技术学院《计算机创客训练》2023-2024学年第一学期期末试卷
- 广东茂名健康职业学院《半导体器件原理》2023-2024学年第一学期期末试卷
- 一年级数学计算题专项练习1000题汇编
- 2024八年级地理上册第三章自然资源-我们生存和发展的物质基础学情评估晋教版
- 【2021届备考】2020全国名校物理试题分类解析汇编(11月第二期)A4-竖直上抛运动
- 2025年国务院发展研究中心信息中心招聘应届毕业生1人高频重点提升(共500题)附带答案详解
- 2024年公安机关理论考试题库500道及参考答案
- 2024年全国《国防和兵役》理论知识竞赛试题库与答案
- 特殊情况施工的技术措施
- 企业知识产权保护策略及实施方法研究报告
- 2024年07月11026经济学(本)期末试题答案
- 2024年中小企业股权融资合同3篇
- 2024年01月11289中国当代文学专题期末试题答案
- 2024年秋季生物教研组工作计划
- 2024年云南高中学业水平合格考历史试卷真题(含答案详解)
- 大学物理(二)知到智慧树章节测试课后答案2024年秋湖南大学
评论
0/150
提交评论