版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省广州市嘉福中学2022-2023学年高一数学文联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.要得到函数y=sin2x的图象,只要将函数y=sin(2x﹣)的图象()A.向左平移单位 B.向右平移单位C.向左平移单位 D.向右平移单位参考答案:C【考点】函数y=Asin(ωx+φ)的图象变换.【分析】根据函数y=Asin(ωx+?)的图象变换规律得出结论.【解答】解:将函数y=sin(2x﹣)的图象向左平移个单位,可得函数y=sin[2(x+)﹣]=sin2x的图象,故选C.【点评】本题主要考查函数y=Asin(ωx+?)的图象变换规律,属于中档题.2.如果二次函数有两个不同的零点,则的取值范围是(
)A.
B.
C.
D.参考答案:
D
解析:或3.(5分)下面的判断错误的是() A. 20.6>20.3 B. log23>1 C. 函数y=是奇函数 D. logax?logay=logaxy参考答案:D考点: 对数的运算性质.专题: 函数的性质及应用.分析: A.利用函数y=2x在R上单调递增即可判断出;B.由于log23>log22=1,可知正确;C.由于f(﹣x)===﹣f(x),x∈R,即可判断出;D.由于loga(xy)=logax+logay(a>0,a≠1,x,y>0),即可判断出.解答: A.∵函数y=2x在R上单调递增,∴20.6>20.3,正确;B.∵log23>log22=1,∴正确;C.∵f(﹣x)===﹣f(x),x∈R,因此正确;D.∵loga(xy)=logax+logay(a>0,a≠1,x,y>0),因此不正确.故选:D.点评: 本题考查了指数函数与对数函数的单调性、奇偶性、运算法则,属于基础题.4.若把化成的形式,则的值等于…………(
)(A)
(B)
(C)
(D)
参考答案:D,所以的值等于。5.设集合,,函数的定义域为,值域为,则函数的图像可以是(
)A.B.C.
D.参考答案:B6.设a=90.8,b=270.45,c=()﹣1.5,则a,b,c大小关系为()A.a>b>c B.a<b<c C.a>c>b D.b>c>a参考答案:C【考点】对数值大小的比较.【专题】函数的性质及应用.【分析】考察指数函数y=3x在R上的单调性即可得出.【解答】解:∵指数函数y=3x在R上的单调递增,a=90.8=31.6,b=270.45=31.35,c=()﹣1.5=31.5,∴a>c>b.故选:C.【点评】本题考查了指数函数的单调性,属于基础题.7.已知函数的最小正周期为π,若,则的最小值为(
)A. B. C.π D.参考答案:A【分析】由正弦型函数的最小正周期可求得,得到函数解析式,从而确定函数的最大值和最小值;根据可知和必须为最大值点和最小值点才能够满足等式;利用整体对应的方式可构造方程组求得,;从而可知时取最小值.【详解】由最小正周期为可得:
,
和分别为的最大值点和最小值点设为最大值点,为最小值点
,当时,本题正确选项:A【点睛】本题考查正弦型函数性质的综合应用,涉及到正弦型函数最小正周期和函数值域的求解;关键是能够根据函数的最值确定和为最值点,从而利用整体对应的方式求得结果.8.下列函数中,周期为π,且在上为增函数的是A. B.C. D.参考答案:C【分析】本题首先可以根据题意中函数的周期为以及四个选项中的函数的周期即可排除,然后通过函数在上是否是增函数即可排除项,最后得出结果。【详解】因为函数的周期为,所以排除,因为函数在上单调递减,所以函数在上是单调函数,故C符合,因为函数在上单调递减,所以函数在上不是单调函数,故D不符,综上所述,故选C。【点睛】本题考查函数的性质,主要考查函数的周期性以及单调性,可对四个选项中的函数的周期性以及单调性进行判断即可得出结果,考查推理能力,是中档题。9.下列图形中,不能表示以x为自变量的函数图象的是()A. B. C. D.参考答案:B【考点】函数的概念及其构成要素.【分析】利用函数定义,根据x取值的任意性,以及y的唯一性分别进行判断.【解答】解:B中,当x>0时,y有两个值和x对应,不满足函数y的唯一性,A,C,D满足函数的定义,故选:B10.已知扇形的周长为8cm,圆心角为2弧度,则该扇形的面积为()A.4cm2 B.6cm2 C.8cm2 D.16cm2参考答案:A【考点】G8:扇形面积公式.【分析】设出扇形的半径,求出扇形的弧长,利用周长公式,求出半径,然后求出扇形的面积.【解答】解:设扇形的半径为r,弧长为l,则扇形的周长为l+2r=8,∴弧长为:αr=2r,∴r=2cm,根据扇形的面积公式,得S=αr2=4cm2,故选:A.二、填空题:本大题共7小题,每小题4分,共28分11.函数与,其中,且,它们的大致图象在同一直角坐标系中有可能是
A.
B.
C.
D.参考答案:D分和讨论可得到D正确.12.在△ABC中,角A,B,C所对的边分别为a,b,c,若△ABC为锐角三角形,且满足,则的取值范围是
▲
.参考答案:由得,因此即,因为△ABC为锐角三角形,所以从而
13.函数y=在(﹣1,+∞)上单调递减,则实数a的取值范围是.参考答案:﹣5<a≤﹣1【考点】函数单调性的判断与证明.【专题】计算题.【分析】根据题意,将题中的函数分离常数,变形为,进而研究反比例函数在区间(0,+∞)上是一个单调减的函数,从而得出实数a的取值范围.【解答】解:函数y==函数的图象可由函数的图象先向右平移a个单位,再向上平移1个单位而得∵函数在(﹣1,+∞)上单调递减,∴,可得﹣5<a≤﹣1故答案为:﹣5<a≤﹣1【点评】本题以分式函数为例,考查了函数的单调性的判断与证明,属于基础题.题中的分式函数与反比例函数有关,因此用反比例函数的图象研究比较恰当.14.当函数取最小值时,x=_____________________参考答案:15.若,则的值为________.参考答案:16.在等差数列{an}中,已知,那么它的前8项和=
▲
.参考答案:
8; 17.已知,则_____________.参考答案:.
14.
15.
三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知全集U={1,2,3,4,5,6,7},A={2,4,5},B={1,3,5,7}.(1)求A∪B;(2)求(?UA)∩B;(3)求?U(A∩B).参考答案:【考点】交、并、补集的混合运算.【专题】集合.【分析】根据交、并、补集的运算法则运算即可.【解答】解:全集U={1,2,3,4,5,6,7},A={2,4,5},B={1,3,5,7}.(1)A∪B={1,2,3,4,5,7}(2)(?UA)={1,3,6,7}∴(?UA)∩B={1,3,7}(3)∵A∩B={5}?U(A∩B)={1,2,3,4,6,7}.【点评】本题考查了交、并、补集的混合运算,熟练掌握交、并、补集的定义是解本题的关键.19.(16分)已知函数f1(x)=e|x﹣2a+1|,f2(x)=e|x﹣a|+1,x∈R,1≤a≤6.(1)若a=2,求使f1(x)=f2(x)的x的值;(2)若|f1(x)﹣f2(x)|=f2(x)﹣f1(x)对于任意的实数x恒成立,求a的取值范围;(3)求函数g(x)=﹣在[1,6]上的最小值.参考答案:考点: 指数函数综合题;指数型复合函数的性质及应用.专题: 函数的性质及应用.分析: (1)若a=2,解方程f1(x)=f2(x)即可求x的值;(2)若|f1(x)﹣f2(x)|=f2(x)﹣f1(x)对于任意的实数x恒成立,转化为f1(x)≤f2(x)恒成立,即可求a的取值范围;(3)求出g(x)的表达式,讨论a的取值范围即可求出函数的最值.解答: (1)若a=2,则f1(x)=e|x﹣3|,f2(x)=e|x﹣2|+1,由f1(x)=f2(x)得e|x﹣3|=e|x﹣2|+1,即|x﹣3|=|x﹣2|+1,若x≥3,则方程等价为x﹣3=x﹣2+1,即﹣3=﹣1,不成立,若2<x<3,则方程等价为﹣x+3=x﹣2+1,即2x=4,解得x=2,不成立,若x<2,则方程等价为﹣x+3=﹣x+2+1,此时恒成立;综上使f1(x)=f2(x)的x的值满足x<2.(2)即f1(x)≤f2(x)恒成立,得|x﹣2a+1|≤|x﹣a|+1,即|x﹣2a+1|﹣|x﹣a|≤1对x∈R恒成立,因|x﹣2a+1|﹣|x﹣a|≤|a﹣1|,故只需|a﹣1|≤1,解得0≤a≤2,又1≤a≤6,故a的取值范围为1≤a≤2.(3)①当1≤a≤2时,由(2)知,当x=2a﹣1∈[1,3]时,g(x)min=1.②当2<a≤6时,(2a﹣1)﹣a=a﹣1>0,故2a﹣1>a.x≤a时,,;x≥2a﹣1时,,;a<x<2a﹣1时,由,得,其中,故当时,;当时,.因此,当2<a≤6时,令,得x1=2a﹣2,x2=2a,且,如图,(ⅰ)当a≤6≤2a﹣2,即4≤a≤6时,g(x)min=f2(a)=e;(ⅱ)当2a﹣2<6≤2a﹣1,即时,;(ⅲ)当2a﹣1<6,即时,g(x)min=f1(2a﹣1)=1.综上所述,.点评: 本题主要考查函数性质的应用,利用指数函数的图象和性质是解决本题的关键.综合性较强,运算量较大,有一定的难度.20.如图,E是直角梯形ABCD底边AB的中点,AB=2DC=2BC,将△ADE沿DE折起形成四棱锥A﹣BCDE.(1)求证:DE⊥平面ABE;(2)若二面角A﹣DE﹣B为60°,求二面角A﹣DC﹣B的正切值.参考答案:【考点】二面角的平面角及求法;直线与平面垂直的判定.【分析】(1)由E是直角梯形ABCD底边AB的中点,且AB=2DC,可得四边形BCDE为平行四边形,进一步得到DE⊥EB,DE⊥EA,再由线面垂直的判定得答案;(2)由(1)知,∠AEB即二面角A﹣DE﹣B的平面角,可得∠AEB=60°,又AE=EB,可得△AEB为等边三角形.取BE的中点为F,CD的中点为G,连接AF、FG、AG,可得CD⊥AG.从而∠FGA即所求二面角A﹣DC﹣B的平面角.然后求解直角三角形得二面角A﹣DC﹣B的正切值.【解答】(1)证明:在直角梯形ABCD中,∵DC∥BE,且DC=BE,∴四边形BCDE为平行四边形,又∠B=90°,从而DE⊥EB,DE⊥EA.因此,在四棱锥A﹣BCDE中,有DE⊥面ABE;(2)解:由(1)知,∠AEB即二面角A﹣DE﹣B的平面角,故∠AEB=60°,又∵AE=EB,∴△AEB为等边三角形.设BE的中点为F,CD的中点为G,连接AF、FG、AG,从而AF⊥BE,FG∥DE,于是AF⊥CD,FG⊥CD,从而CD⊥面AFG,因此CD⊥AG.∴∠FGA即所求二面角A﹣DC﹣B的平面角.∵DE⊥面ABE,从而FG⊥面ABE,∴FG⊥AF.设原直角梯形中,AB=2DC=2BC=2a,则折叠后四棱锥中AF=,FG=a,于是在Rt△AFG中,,即二面角A﹣DC﹣B的正切值为.21.(14分)已知函数f(x)=ax--a+1,(a>0且a≠1)恒过定点(3,2),(1)求实数a;(2)在(1)的条件下,将函数f(x)的图象向下平移1个单位,再向左平移a个单位后得到函数g(x),设函数g(x)的反函数为h(x),求h(x)的解析式;(3)对于定义在[1,9]的函数y=h(x),若在其定义域内,不等式[h(x)+2]2≤h(x2)+m+2恒成立,求m的取值范围.参考答案:(1)由已知a3-a+1=2,∴a=3,……3分(2)∵f(x)=3x-3+1,∴g(x)=3x,……5分∴h(x)=log3x(x>0).……7分(3)要使不等式有意义,则有1≤x≤9且1≤x2≤9,∴1≤x≤3,……8分据题有(log3x+2)2≤log3x2+m+2在[1,3]恒成立.∴设t=log3x(1≤x≤3),∴0≤t≤1.∴(t+2)2≤2t+m+2在[0,1]时恒成立,即:m≥t2+2t+2在[0,1]时恒成立,……10分设y=t2+2t+2=(t+1)2+1,t∈[0,1],∴t=1时有ymax=5,……12分∴m≥5.……14分22.(8分)如图所示的长方体ABCD﹣A1B1C1D1中,底面ABCD是边长为2的正方形,O为AC与BD的交点,,M是线段B1D1的中点.(Ⅰ)求证:BM∥平面D1AC;(Ⅱ)求证:D1O⊥平面AB1C.参考答案:考点: 空间中直线与平面之间的位置关系.专题: 证明题.分析: (Ⅰ)欲证BM∥平面D1AC,根据直线与平面平行的判定定理可知只需证BM与平面D1AC内一直线平行,连接D1O,易证四边形D1OBM是平行四边形,则D1O∥BM,D1O?平面D1AC,BM?平面D1AC,满足定理所需条件;(Ⅱ)欲证D1O⊥平面AB1C,根据直线与平面垂直的判定定理可知只需证D1O与平面AB1C内两相交直线垂直,连接OB1,根据勾股定理可知OB1⊥D1O,AC⊥D1O,又AC∩OB1=O,满足定理所需条件.解答: (Ⅰ)连接D1O,如图,∵O、M分别是BD、B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 产品标识和可追溯性培训教材课件
- 食品安全从农田到餐桌
- 糖尿病护理措施及治疗
- 2024年对苯二胺项目资金筹措计划书代可行性研究报告
- 智慧粮库解决方案
- 肺部感染治疗新进展
- 水源热泵制冷工作原理培训
- 销售年中规划
- 整式的乘法说课稿
- 好玩的纸说课稿
- GB 5920-2024汽车和挂车光信号装置及系统
- 高中地理人教版(2019)必修第一册 全册教案
- 万达入职性格在线测评题
- 三年级上册心理健康课件-第十四课-尊重他人-尊重自己|北师大版
- 大型集团公司信息安全整体规划方案相关两份资料
- 打造低空应急体系场景应用实施方案
- 高校实验室安全通识课学习通超星期末考试答案章节答案2024年
- 中华人民共和国标准设计施工总承包招标文件(2012年版)
- 耳鸣的认知治疗干预
- 第15课 两次鸦片战争 教学设计 高中历史统编版(2019)必修中外历史纲要上册+
- 珍爱生命阳光成长主题班会课件
评论
0/150
提交评论