2024年公务员考试《数量关系题》题库及完整答案【考点梳理】_第1页
2024年公务员考试《数量关系题》题库及完整答案【考点梳理】_第2页
2024年公务员考试《数量关系题》题库及完整答案【考点梳理】_第3页
2024年公务员考试《数量关系题》题库及完整答案【考点梳理】_第4页
2024年公务员考试《数量关系题》题库及完整答案【考点梳理】_第5页
已阅读5页,还剩101页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年公务员考试《数量关系题》题库第一部分单选题(300题)1、2,7,14,21,294,()

A、28

B、35

C、273

D、315

【答案】:答案:D

解析:21=7+14,14=2×7,294=14×21,为两项相加、相乘交替得到后-项,即所填数字为21+294=315。故选D。2、1,2,6,30,210,()

A、1890

B、2310

C、2520

D、2730

【答案】:答案:B

解析:2÷1=2,6÷2=3,30÷6=5,210÷30=7,相邻两项后一项除以前一项的商构成连续的质数列,即所填数字为210×11=2310。故选B。3、一人上楼,边走边数台阶。从一楼走到四楼,共走了54级台阶。如果每层楼之间的台阶数相同,他一直要走到八楼,问他从一楼到八楼一共要走多少级台阶?()

A、126

B、120

C、114

D、108

【答案】:答案:A

解析:从一楼走到四楼,共走了54级台阶,而他实际走了3层楼的高度,所以每层楼的台阶数为54÷3=18级。他从一楼到八楼一共要走7层楼,因此共要走7×18=126级台阶。故选A。4、从A地到B地为上坡路。自行车选手从A地出发按A-B-A-B的路线行进,全程平均速度为从B地出发,按B-A-B-A的路线行进的全程平均速度的4/5,如自行车选手在上坡路与下坡路上分别以固定速度匀速骑行,问他上坡的速度是下坡速度的()。

A、1/2

B、1/3

C、2/3

D、3/5

【答案】:答案:A

解析:S=VT,当S一定的时候,VT成反比,两次行程的平均速度之比是4:5,故两次行程所用时间之比T1:T2=5:4。设一个下坡的时间是1,一个上坡的时间是n,则上坡速度是下坡速度的1/n。A-B-A-B的过程经历了2个上坡和1个下坡,则T1=2n+1;B-A-B-A的过程经历了2个下坡和1个上坡,则T2=2+n,而T1:T2=5:4=(2n+1):(2+n),解得n=2。故选A。5、5,7,4,6,4,6,()

A、4

B、5

C、6

D、7

【答案】:答案:B

解析:依次将相邻两个数中后一个数减去前一个数得2,-3,2,-2,2,为奇数项是2偶数项为公差为1的等差数列,即所填数字为6+(-1)=5。故选B。6、当含盐30%的60千克盐水蒸发为含盐40%的盐水时,盐水重量为多少千克?()

A、45

B、50

C、55

D、60

【答案】:答案:A

解析:设蒸发后盐水质量为x千克,由盐水中盐的质量不变可得,60×30%=40%x,解得x=45。故选A。7、12,23,35,47,511,()

A、613

B、612

C、611

D、610

【答案】:答案:A

解析:数位数列,各项首位数字“1,2,3,4,5,(6)”构成等差数列,其余数字“2,3,5,7,11,(13)”构成质数数列。因此,未知项为613。故选A。8、甲、乙两人在一条400米的环形跑道上从相距200米的位置出发,同向匀速跑步。当甲第三次追上乙的时候,乙跑了2000米。问甲的速度是乙的多少倍?()

A、1.2

B、1.5

C、1.6

D、2.0

【答案】:答案:B

解析:环形同点同向出发每追上一次,甲比乙多跑一圈。第一次由于是不同起点,甲比乙多跑原来的差距200米;之后两次追上都多跑400米,甲一共比乙多跑200+400×2=1000(米)。乙跑了2000米,甲跑了3000米,时间相同,则速度比与路程比也相同,可知甲的速度是乙的3000÷2000=1.5倍。故选B。9、6,21,43,72,()

A、84

B、96

C、108

D、112

【答案】:答案:C

解析:依次将相邻两个数中后一个数减去前一个数得15,22,29,构成公差为7的等差数列,即所填数字为72+29+7=108。故选C。10、11,34,75,(),235

A、138

B、139

C、140

D、14

【答案】:答案:C

解析:思路一:11=23+3;34=33+7;75=43+11;140=53+15;235=63+19其中2,3,4,5,6等差;3,7,11,15,19等差。思路二:二级等差。故选C。11、假设地球上新生成的资源的增长速度是一定的,照此推算,地球上的资源可供110亿人生活90年,或者可供90亿人生活210年。为了使人类能够不断繁衍,那么地球最多能养活多少亿人?()

A、70

B、75

C、80

D、100

【答案】:答案:B

解析:设地球的原始资源可供x亿人生存一年,每年增长的资源可供y亿人生存一年,即x+90y=90×110,x+210y=210×90,两式联立得y=75,为了使人类能够不断繁衍,那么地球最多能养活75亿人。故选B。12、在某城市中,有60%的家庭订阅某种日报,有85%的家庭有电视机。假定这两个事件是独立的,今随机抽出一个家庭,所抽家庭既订阅该种日报又有电视机的概率是()。

A、0.09

B、0.25

C、0.36

D、0.51

【答案】:答案:D

解析:由于是独立重复试验,故既订阅该中日报又有电视机的概率是60%×85%=51%。故选D。13、5,7,4,6,4,6,()

A、4

B、5

C、6

D、7

【答案】:答案:B

解析:依次将相邻两个数中后一个数减去前一个数得2,-3,2,-2,2,为奇数项是2偶数项为公差为1的等差数列,即所填数字为6+(-1)=5。故选B。14、8,3,17,5,24,9,26,18,30,()

A、22

B、25

C、33

D、36

【答案】:答案:B

解析:多重数列。很明显数列很长,确定为多重数列。先考虑交叉,发现没有规律,无对应的答案。因为总共十项,考虑两两分组,再内部作加减乘除方等运算,发现每两项的和依次为11,22,33,44,(55=30+25)。故选B。15、某一学校有500人,其中选修数学的有359人,选修文学的有408人,那么两种课程都选的学生至少有多少?()

A、165人

B、203人

C、267人

D、199人

【答案】:答案:C

解析:设至少有x人两种课程都选,则359-x+408-x+x≤500,解得x≥267,则两种课程都选的学生至少有267人。故选C。16、有一1500米的环形跑道,甲,乙二人同时同地出发,若同方向跑,50分钟后甲比乙多跑一圈,若以反方向跑,2分钟后二人相遇,则乙的速度为()。

A、330米/分钟

B、360米/分钟

C、375米/分钟

D、390米/分钟

【答案】:答案:B

解析:同向追及50分钟后甲比乙多跑一圈得:(V甲-V乙)×50=1500;由反向跑2分钟后相遇有:(V甲+V乙)×2=1500,解得V乙=360(米/分钟)。故选B。17、10,9,17,50,()

A、100

B、99

C、199

D、200

【答案】:答案:C

解析:10×1-1=9;9×2-1=17;17×3-1=50;50×4-1=199。故选C。18、某商店花10000元进了一批商品,按期望获得相当于进价25%的利润来定价。结果只销售了商品总量的30%。为尽快完成资金周转,商店决定打折销售,这样卖完全部商品后,亏本1000元。问商店是按定价打几折销售的?()

A、九折

B、七五折

C、六折

D、四八折

【答案】:答案:C

解析:由只销售了总量的30%知,打折前销售额为10000×(1+25%)×30%=3750元;设此商品打x折出售,剩余商品打折后,销售额为10000×(1+25%)×(1-30%)x=8750x。根据亏本1000元,可得3750+8750x-10000=﹣1000,解得x=0.6,即打六折。故选C。19、3,30,129,348,()

A、532

B、621

C、656

D、735

【答案】:答案:D

解析:3=13+2、30=33+3、129=53+4、348=73+5,其中底数1、3、5、7构成连续的奇数列,另一部分2、3、4、5是连续的自然数,即所填数字为93+6=735。故选D。20、一旅行团共有50位游客到某地旅游,去A景点的游客有35位,去B景点的游客有32位,去C景点的游客有27位,去A、B景点的游客有20位,去B、C景点的游客有15位,三个景点都去的游客有8位,有2位游客去完一个景点后先行离团,还有1位游客三个景点都没去。那么,50位游客中有多少位恰好去了两个景点?()

A、29

B、31

C、35

D、37

【答案】:答案:A

解析:设去两个景点的人数为y,根据三集合非标准型公式可得:35+32+27-y-2×8=50-1,解得y=29。故选A。21、8,10,14,18,()

A、24

B、32

C、26

D、20

【答案】:答案:C

解析:8×2-6=10;10×2-6=14;14×2-10=18;18×2-10=26。故选C。22、2,7,14,21,294,()

A、28

B、35

C、273

D、315

【答案】:答案:D

解析:21=7+14,14=2×7,294=14×21,为两项相加、相乘交替得到后-项,即所填数字为21+294=315。故选D。23、-1,3,-3,-3,-9,()

A、-9

B、-4

C、-14

D、-45

【答案】:答案:D

解析:题干倍数关系明显,考虑作商。后项除以前项得到新数列:-3、-1、1、3,新数列为公差是2的等差数列,则新数列的下一项应为5,所求项为:-9×5=-45。故选D。24、一人骑车上班需要50分钟,途中骑了一段时间后自行车坏了,只好推车去上班,结果晚到10分钟,如果骑车的速度比步行的速度快一倍,则步行了多少分钟?()

A、20

B、34

C、40

D、50

【答案】:答案:A

解析:设骑车速度为2,步行速度为1,设步行时间为t分钟,由题意可知,50×2=2(50+10-t)+1t,得t=20,即步行了20分钟。故选A。25、为帮助果农解决销路,某企业年底买了一批水果,平均发给每部门若干筐之后还多了12筐,如果再买进8筐则每个部门可分得10筐,则这批水果共有()筐。

A、192

B、198

C、200

D、212

【答案】:答案:A

解析:由于再买进8筐则每个部门可分得10筐,则总筐数加8应能被10整除,排除B、C。将A项代入题目,可得部门数为(192+8)÷10=20(个),则原来平均发给每部门(192-12)÷20=9(筐),水果筐数为整数解,符合题意。故选A。26、2012年3月份的最后一天是星期六,则2013年3月份的最后一天是()。

A、星期天

B、星期四

C、星期五

D、星期六

【答案】:答案:A

解析:从2012年3月31号到2013年3月31号,一共是365天,365÷7=52周…1天,所以星期六加一天即为星期天。故选A。27、一个人从家到公司,当他走到路程的一半的时候,速度下降了10%,问:他走完全程所用时间的前半段和后半段所走的路程比是()。

A、10:9

B、21:19

C、11:9

D、22:18

【答案】:答案:B

解析:设前半程速度为10,则后半程速度为9,路程总长为180,则前半程用时9,后半程用时10,总耗时19,一半为9.5。因此前半段时间走过的路程为90+9×(9.5-9)=94.5,后半段时间走过的路程为9×9.5=85.5。两段路程之比为94.5:85.5=21:19。故选B。28、甲、乙、丙三辆汽车分别从A地开往千里之外的B地。若乙比甲晚出发30分钟,则乙出发后2小时追上甲;若丙比乙晚出发20分钟,则丙出发后5小时追上乙。若甲出发10分钟后乙出发,当乙追上甲时,丙才出发,则丙追上甲所需时间是()。

A、110分钟

B、150分钟

C、127分钟

D、128分钟

【答案】:答案:B

解析:设甲、乙、丙三辆汽车的速度分别为x、y、z。由于甲行驶30分钟的路程,乙需要2小时才能追上,则30x=(y-x)×2×60,化简得x∶y=4∶5。又因乙行驶20分钟的路程,丙需要5小时才能追上,则20y=(z-y)×5×60,化简得y∶z=15∶16。所以三辆汽车的速度x∶y∶z=12∶15∶16。赋值甲、乙、丙的速度分别为12、15、16,甲出发10分钟后乙出发,则乙追上甲的时间为(分钟),故丙出发时甲已经行驶10+40=50(分钟),设丙追上甲所需时间是t分钟,可得方程12×50=(16-12)×t,解得t=150。故选B。29、一旅行团共有50位游客到某地旅游,去A景点的游客有35位,去B景点的游客有32位,去C景点的游客有27位,去A、B景点的游客有20位,去B、C景点的游客有15位,三个景点都去的游客有8位,有2位游客去完一个景点后先行离团,还有1位游客三个景点都没去。那么,50位游客中有多少位恰好去了两个景点?()

A、29

B、31

C、35

D、37

【答案】:答案:A

解析:设去两个景点的人数为y,根据三集合非标准型公式可得:35+32+27-y-2×8=50-1,解得y=29。故选A。30、把一根钢管锯成5段需要8分钟,如果把同样的钢管锯成20段需要多少分钟?()

A、32分钟

B、38分钟

C、40分钟

D、152分钟

【答案】:答案:B

解析:把一根钢管锯成5段需要锯4次,所以每锯一次需要8÷4=2(分钟)。则锯20段需要锯19次,所需的时间为19×2=38(分钟)。故选B。31、某陶瓷公司要到某地推销瓷器,公司与该地相距900千米。已知瓷器成本为每件4000元,每件瓷器运费为2.5元/千米。如果在运输及销售过程中瓷器的损耗为25%,那么该公司要想实现20%的利润率,瓷器的零售价应是()元。

A、8000

B、8500

C、9600

D、1000

【答案】:答案:D

解析:以一件瓷器为例,1件瓷器成本为4000元,运费为2.5×900=2250元,则成本为4000+2250=6250元,要想实现20%的利润率,应收入6250×(1+20%)=7500元;由于损耗,实际的销售产品数量为1×(1-25%)=75%,所以实际零售价为7500÷75%=1000元。故选D。32、某班有56名学生,每人都参加了a、b、c、d、e五个兴趣班中的一个。已知有27人参加a兴趣班,参加b兴趣班的人数第二多,参加c、d兴趣班的人数相同,e兴趣班的参加人数最少,只有6人,问参加b兴趣班的学生有多少个?()

A、7个

B、8个

C、9个

D、10个

【答案】:答案:C

解析:设b班人数为x,c、d班的人数均为y,由b班人数第二多,e班人数最少,可知各班人数关系为:27>x>y>6。该班有56名学生,56=27+x+y+y+6,即x+2y=23,其中2y是偶数,23为奇数,则x为奇数,排除B、D。代入A选项,当x=7时,y=8,则x<Y,不符合题意,排除。故选C。33、一只天平有7克、2克砝码各一个,如果需要将140克的盐分成50克、90克各一份,至少要称几次?()

A、六

B、五

C、四

D、三

【答案】:答案:D

解析:第一步,用天平将140g分成两份,每份70g;第二步,将其中的一份70g,平均分成两份35g;第三步,将砝码分别放在天平的两边,将35g盐放在天平两边至平衡,则每边为(35+7+2)÷2=22g,则砝码为2g的一边,盐就为20g,将其与第一步剩下的70g盐混合,得到90g,剩下的就是50g。即一共称了三次。故选D。34、有一个五位数,左边的三位数比右边的两位数的4倍还多4,如果把右边两位数移到最前面,新的五位数比原来的2倍还多11122,则原来的五位数是()。

A、18044

B、24059

C、27267

D、30074

【答案】:答案:B

解析:多位数问题考虑用代入排除法解题。代入A选项,180=44×4+4,但44180≠18044×2+11122,不符合题意,排除;代入B选项,240=59×4+4,59240=24059×2+11122,符合题意,正确。故选B。35、如果现在是18点整,那么分针旋转1990圈之后是几点钟?()

A、16

B、17

C、18

D、19

【答案】:答案:A

解析:分针旋转1圈为一小时,所以分针旋转12圈,时针旋转1圈,仍为18点整。由“1990÷12=165余10”可知,此时时钟表示的时间应是16点整。故选A。36、119,83,36,47,()

A、-37

B、-11

C、11

D、37

【答案】:答案:B

解析:119=83+36,83=36+47,即所填数字为36-47=-11。故选B。37、某楼盘的地下停车位,第一次开盘时平均价格为15万元/个;第二次开盘时,车位的销售量增加了一倍、销售额增加了60%。那么,第二次开盘的车位平均价格为()。

A、10万元/个

B、11万元/个

C、12万元/个

D、13万元/个

【答案】:答案:C

解析:销售额=平均价格×销售量,已知第一次开盘平均价格为15万元/个,赋销售量为1,则销售额为15万。第二次开盘时,销售量增加了一倍,即为2,销售额增加了60%,得销售额为15×(1+60%)=24(万元),故第二次开盘平均价格为24÷2=12(万元/个)。故选C。38、13,14,16,21,(),76

A、23

B、35

C、27

D、22

【答案】:答案:B

解析:相连两项相减:1,2,5,();再减一次:1,3,9,27;()=14;21+14=35。故选B。39、某单位组织工会活动,30名员工自愿参加做游戏。游戏规则:按1~30号编号并报数,第一次报数后,单号全部站出来,然后每次余下的人中第一个开始站出来,隔一人站出来一个人。最后站出来的人给大家唱首歌。那么给大家唱歌的员工编号是()。

A、14

B、16

C、18

D、20

【答案】:答案:B

解析:第一次报数后,单号全部站出来,剩余号码为2、4、6、8、10······30,均为2的倍数;每次余下的人中第一个开始站出来,隔一人站出来一个人,剩余号码为4、8、12、16、20、24、28,均为4的倍数;再从余下的号码中第一个人开始站出来,隔一个人站出来一个人,剩余号码为8、16、24,均为8的倍数;重复上一次的步骤,剩余16号,为16的倍数。1—30中16的倍数只有16。故选B。40、-1,6,25,62,()

A、123

B、87

C、150

D、109

【答案】:答案:A

解析:-1=1-2=13-2,6=8-2=23-2,25=27-2=33-2,62=64-2=43-2,53-2=125-2=123。故选A。41、有苹果若干个,若把其换成桔子,则多换5个;若把其换成菠萝,则少掉7个,已知每个桔子4角9分钱,每个菠萝7角钱,每个苹果的单价是多少?()

A、5角

B、5角8分

C、5角6分

D、5角4分

【答案】:答案:C

解析:此题可理解为:把苹果全部卖掉,得到钱若干,若用这些钱买成同样数量的桔子,则剩下49×5=245分,若用这些钱买成同样数量的菠萝,则缺少70×7=490分,所以苹果个数=(245+490)÷(70-49)=35个,苹果总价=49×35+49×5=1960分,每个苹果单价=1960÷35=56分=5角6分。故选C。42、1/2,1,1,(),9/11,11/13

A、2

B、3

C、1

D、9

【答案】:答案:C

解析:1/2,1,1,(),9/11,11/13=>1/2,3/3,5/5,7/7,9/11,11/13=>分子1,3,5,7,9,11等差;分母2,3,5,7,11,13连续质数列。故选C。43、2,3,13,175,()

A、30625

B、30651

C、30759

D、30952

【答案】:答案:B

解析:第一项乘以2,然后加第二项的平方等于第三项。2×2+3×3=13。第二项乘以2,然后加第三项的平方等于第四项。3×2+13×13=175。第三项乘以2,然后加第四项的平方等于第五项。13×2+175×175=30651。故选B。44、90,85,81,78,()

A、75

B、74

C、76

D、73

【答案】:答案:C

解析:后项减去前项,可得-5、-4、-3、(-2),这是一个公差为1的等差数列,所以下一项为78-2=76。故选C。45、有一架天平,只有5克和30克的砝码各一个。现在要用这架天平把300克味精平均分成3份,那么至少需要称多少次?()

A、3次

B、4次

C、5次

D、6次

【答案】:答案:A

解析:第1次,用30克和5克砝码称出35克味精;第2次,再35克味精作为砝码,和30克砝码一起称出65克味精,此时已称出100克味精;第3次,用100克味精作为砝码称出100克味精,还剩100克。把300克味精平均分为3份。故“至少”需要3次。故选A。46、-7,0,1,2,9,()

A、42

B、18

C、24

D、28

【答案】:答案:D

解析:-7=(-2)3+1;0=(-1)3+1;1=03+1;2=13+1;9=23+1;28=33+1。故选D。47、44,52,59,73,83,94,()

A、107

B、101

C、105

D、113

【答案】:答案:A

解析:每相邻的两项作差,得到8,7,14,10,11,每一个差是原数列中前一项个位数与十位数字的和,即8=4+4,7=5+2,14=5+9,10=7+3,11=8+3,所以9+4=13,所以未知项为13+94=107。故选A。48、1,2,0,3,-1,4,()

A、-2

B、0

C、5

D、6

【答案】:答案:A

解析:奇数项1、0、-1、(-2)是公差为-1的等差数列;偶数项2、3、4是连续自然数。故选A。49、3,2,2,5,17,()

A、24

B、36

C、44

D、56

【答案】:答案:D

解析:依次将相邻两个数中后一个数减去前一个数得-1,0,3,12,再次作差得1,3,9,构成公比为3的等比数列,即所填数字为9×3+12+17=56。故选D。50、玉米的正常市场价格为每公斤1.86元到2.18元,近期某地玉米价格涨至每公斤2.68元。经测算,向市场每投放储备玉米100吨,每公斤玉米价格下降0.05元。为稳定玉米价格,向该地投放储备玉米的数量不能超过()。

A、800吨

B、1080吨

C、1360吨

D、1640吨

【答案】:答案:D

解析:要稳定玉米价格,玉米的价格必须调整至正常区间。所以最低下降为每公斤1.86元,即下降了2.68-1.86=0.82(元)。因为每投放100吨,价格下降0.05元,所以投放玉米的数量不能超过0.82÷0.05×100=1640(吨)。故选D。51、某商店以5元/斤的价格购入一批蔬菜,上午以8元/斤的价格卖出总进货量的60%,中午以上午售出价的8折卖出总进货量的20%,下午以中午售出价的一半卖出剩余货量的一半,最后获利210元。则该商店一共购入多少斤蔬菜?()

A、140

B、150

C、160

D、180

【答案】:答案:B

解析:赋值购进的量为10斤,上午以8元/斤的价格卖出6斤,中午以6.4元/斤的价格卖出2斤,下午以3.2元/斤的价格卖出1斤,总收入=8×6+6.4×2+3.2×1=64元,总利润=64-5×10=14元,实际购入(210/14)×10=150斤。故选B。52、2,6,18,54,()

A、186

B、162

C、194

D、196

【答案】:答案:B

解析:该数列是以3为公比的等比数列,故空缺项为:54×3=162。故选B。53、钢铁厂某年总产量的1/6为型钢类,1/7为钢板类,钢管类的产量正好是型钢和钢板产量之差的14倍,而钢丝的产量正好是钢管和型钢产量之和的一半,而其它产品共为3万吨。问该钢铁厂当年的产量为多少万吨?()

A、48

B、42

C、36

D、28

【答案】:答案:D

解析:假设总产量为,则型钢类产量为,钢板类产量为,钢管类为,钢丝的产量为,则,解得万吨,则总产量万吨。故正确答案为D。54、2,3,5,7,()

A、8

B、9

C、11

D、12

【答案】:答案:C

解析:2,3,5,7,为连续的质数数列,7后面质数为11,则所求项为11。故选C。55、4,12,8,10,()

A、6

B、8

C、9

D、24

【答案】:答案:C

解析:思路一:4-12=-812-8=48-10=-210-9=1,其中,-8、4、-2、1等比。思路二:(4+12)/2=8(12+8)/2=10(10+8)/2=/=9。故选C。56、13,14,16,21,(),76

A、23

B、35

C、27

D、22

【答案】:答案:B

解析:相连两项相减:1,2,5,();再减一次:1,3,9,27;()=14;21+14=35。故选B。57、某种茶叶原价30元一包,为了促销,降低了价格,销量增加了二倍,收入增加了五分之三,则一包茶叶降价()元。

A、12

B、14

C、13

D、11

【答案】:答案:B

解析:设原来茶叶的销量为1,那么现在销量为3。原来收入为30元,现在收入为30×(1+3/5)=48元,每包茶叶为48÷3=16元,降价30-16=14元。故选B。58、调研人员在一次市场调查活动中收回了435份调查问卷,其中80%的调查问卷上填写了被调查者的手机号码。那么调研人员至少需要从这些调查表中随机抽出多少份,才能保证一定能找到两个手机号码后两位相同的被调查者?()

A、101

B、175

C、188

D、200

【答案】:答案:C

解析:在435份调查问卷中有435×20%=87份没有写手机号;且手机号码后两位可能出现的情况一共10×10=100种,因此要保证一定能找到两个手机号码后两位相同的被调查者,至少需要抽取87+100+1=188份。故选C。59、41,59,32,68,72,()

A、28

B、36

C、40

D、48

【答案】:答案:A

解析:两两分组得到(41,59),(32,68),(72,()),发现组内做和均为100。故选A。60、2,3,6,15,()

A、25

B、36

C、42

D、64

【答案】:答案:C

解析:相邻两项间做差。做差后得到的数为1,3,9;容易观察出这是一个等比数列,所以做差数列的下一项为27,则答案为15+27=42。故选C。61、2,7,13,20,25,31,()

A、35

B、36

C、37

D、38

【答案】:答案:D

解析:依次将相邻两个数中后一个数减去前一个数得5,6,7,5,6,为(5,6,7)三个数字组成的循环数列,即所填数字为31+7=38。故选D。62、某种茶叶原价30元一包,为了促销,降低了价格,销量增加了二倍,收入增加了五分之三,则一包茶叶降价()元。

A、12

B、14

C、13

D、11

【答案】:答案:B

解析:设原来茶叶的销量为1,那么现在销量为3。原来收入为30元,现在收入为30×(1+3/5)=48元,每包茶叶为48÷3=16元,降价30-16=14元。故选B。63、8,4,8,10,14,()

A、22

B、20

C、19

D、24

【答案】:答案:C

解析:题干数列为递推数列,规律为:8÷2+4=8,4÷2+8=10,8÷2+10=14,即第一项÷2+第二项=第三项,因此未知项为10÷2+14=19。故选C。64、商店购入一百多件A款服装,其单件进价为整数元,总进价为1万元,已知单件B款服装的定价为其进价的1.6倍,其进价为A款服装的75%,销售每件B款服装的利润为A款服装的一半,某日商店以定价销售A款服装的总销售额超过2500元,问当天至少销售了多少件A款服装?()

A、13

B、15

C、17

D、19

【答案】:答案:C

解析:推出A款服装有125件,进价为80元,B款服装进价为80×0.75=60(元),B款服装定价为60×1.6=96(元),利润为96-60=36(元),A款服装利润为36×2=72(元),所以A款服装售价为80+72=152(元)。销售数量至少为2500÷152=16.4,取整为17件。故选C。65、4,12,8,10,()

A、6

B、8

C、9

D、24

【答案】:答案:C

解析:思路一:4-12=-812-8=48-10=-210-9=1,其中,-8、4、-2、1等比。思路二:(4+12)/2=8(12+8)/2=10(10+8)/2=/=9。故选C。66、某制衣厂接受一批服装订货任务,按计划天数进行生产,如果每天平均生产20套服装,就比订货任务少生产100套;如果每天生产23套服装,就可超过订货任务20套。那么,这批服装的订货任务是多少套?()

A、760

B、1120

C、900

D、850

【答案】:答案:C

解析:由题意每天生产多出3套,总共就会多生产出120,那么计划的天数为40天,所以这批服装为20×40+100=900(套)。故选C。67、某校二年级全部共3个班的学生排队.每排4人,5人或6人,最后一排都只有2人.这个学校二年级有()名学生。

A、120

B、122

C、121

D、123

【答案】:答案:B

解析:由题意知,学生数除以4、5、6均余2,由代入法可以得到,只有B项满足条件。68、某制衣厂接受一批服装订货任务,按计划天数进行生产,如果每天平均生产20套服装,就比订货任务少生产100套;如果每天生产23套服装,就可超过订货任务20套。那么,这批服装的订货任务是多少套?()

A、760

B、1120

C、900

D、850

【答案】:答案:C

解析:由题意每天生产多出3套,总共就会多生产出120,那么计划的天数为40天,所以这批服装为20×40+100=900(套)。故选C。69、一件商品相继两次分别按折扣率为10%和20%进行折扣,已知折扣后的售价为540元,那么折扣前的售价为()。

A、600元

B、680元

C、720元

D、750元

【答案】:答案:D

解析:设原售价为x元,利用“折扣后售价为540元”得x(1-10%)(1-20%)=540。解得x=750。故选D。70、60名员工投票从甲、乙、丙三人中评选最佳员工,选举时每人只能投票选举一人,得票最多的人当选。开票中途累计,前30张选票中,甲得15票,乙得10票,丙得5票。问在尚未统计的选票中,甲至少再得多少票就一定当选?()

A、15

B、13

C、10

D、8

【答案】:答案:B

解析:构造最不利,由题意,还剩30名员工没有投票,考虑最不利的情况,乙对甲的威胁最大,先给乙5张选票,甲乙即各有15张选票,其余25张选票中,甲只要在获得13张选票就可以确定当选。故选B。71、5,7,4,6,4,6,()

A、4

B、5

C、6

D、7

【答案】:答案:B

解析:依次将相邻两个数中后一个数减去前一个数得2,-3,2,-2,2,为奇数项是2偶数项为公差为1的等差数列,即所填数字为6+(-1)=5。故选B。72、某快速反应部队运送救灾物资到灾区。飞机原计划每分钟飞行12千米,由于灾情危急,飞行速度提高到每分钟15千米,结果比原计划提前30分钟到达灾区,则机场到灾区的距离是多少千米?()

A、1600

B、1800

C、2050

D、2250

【答案】:答案:B

解析:设机场到灾区的距离为x,由每分钟飞行12千米可知,原飞行时间为;由每分钟15千米可知,现飞行时间为。根据比原计划提前30分钟,可得,解得x=1800(千米)。故选B。73、1,3,2,6,11,19,()

A、24

B、36

C、29

D、38

【答案】:答案:B

解析:该数列为和数列,即前三项之和为第四项。故空缺处应为6+11+19=36。故选B。74、在列车平行轨道上,甲、乙两列火车相对开来。甲列火车长236米,每秒行38米;乙列火车长275米,已知这两列火车错车开过用了7秒钟,则乙列火车按这个速度通过长为2000米的隧道需要()秒钟。

A、65

B、70

C、75

D、80

【答案】:答案:A

解析:236+275=(38+v)×7,所以v=35,那么275+2000=35t,t=65,选A。75、90,85,81,78,()

A、75

B、74

C、76

D、73

【答案】:答案:C

解析:后项减去前项,可得-5、-4、-3、(-2),这是一个公差为1的等差数列,所以下一项为78-2=76。故选C。76、30,42,56,72,()

A、86

B、60

C、90

D、94

【答案】:答案:C

解析:第一次做差之后为12、14、16,是公差为2的等差数列,下一个应为18,原数列下一项为18+72=90。故选C。77、有4堆木材,都堆成正三角形垛,层数分别为5,6,7,8层,那么共有木材()根。

A、110

B、100

C、120

D、130

【答案】:答案:B

解析:5层木材有1+2+3+4+5=15,6层木材有1+2+3+4+5+6=21,7层木材有1+2+3+4+5+6+7=28,8层木材有1+2+3+4+5+6+7+8=36,所以共有15+21+28+36=100根木材。故选B。78、30,42,56,72,()

A、86

B、60

C、90

D、94

【答案】:答案:C

解析:第一次做差之后为12、14、16,是公差为2的等差数列,下一个应为18,原数列下一项为18+72=90。故选C。79、某商店以5元/斤的价格购入一批蔬菜,上午以8元/斤的价格卖出总进货量的60%,中午以上午售出价的8折卖出总进货量的20%,下午以中午售出价的一半卖出剩余货量的一半,最后获利210元。则该商店一共购入多少斤蔬菜?()

A、140

B、150

C、160

D、180

【答案】:答案:B

解析:赋值购进的量为10斤,上午以8元/斤的价格卖出6斤,中午以6.4元/斤的价格卖出2斤,下午以3.2元/斤的价格卖出1斤,总收入=8×6+6.4×2+3.2×1=64元,总利润=64-5×10=14元,实际购入(210/14)×10=150斤。故选B。80、2/3,1/2,3/7,7/18,()

A、4/11

B、5/12

C、7/15

D、3/16

【答案】:答案:A

解析:4/11,2/3=4/6,1/2=5/10,3/7=6/14,…分子是4、5、6、7,接下来是8.分母是6、10、14、18,接下来是22。故选A。81、84,12,48,30,39,()

A、23

B、36.5

C、34.5

D、43

【答案】:答案:C

解析:依次将相邻两个数中前一个数减去后一个数得72,-36,18,-9,构成公比为-0.5的等比数列,即所填数字为39-4.5=34.5。故选C。82、以正方形的4个顶点和中心点中的任意三点为顶点可以构成几种面积不等的三角形?()

A、1

B、2

C、3

D、4

【答案】:答案:B

解析:若3个点都从正方形的4个顶点中取,则得到的三角形面积是正方形面积的一半:若3个点中有一个是中心点,其他2个是正方形的顶点,则得到的三角形面积是正方形面积的四分之一。因此,可以构成2种面积不等的兰角形。故选B。83、2,1,2/3,1/2,()

A、3/4

B、1/4

C、2/5

D、5/6

【答案】:答案:C

解析:数列可化为4/2,4/4,4/6,4/8,分母都是4,分子2,4,6,8等差,所以后项为4/10=2/5。故选C。84、2,4,10,18,28,(),56

A、32

B、42

C、52

D、54

【答案】:答案:B

解析:因式分解数列。2=1×2,4=1×4,10=2×5,18=3×6,28=4×7,()=?×?,56=7×8,每一项的两个因子之和分别为3、5、7、9、11、()、15,构成公差为2的等差数列。由此可知,空缺项的两个因子的和为13,结合选项,只有B项的42=6×7分解后两个因子的和为13。故选B。85、1806,1510,1214,918,()

A、724

B、722

C、624

D、622

【答案】:答案:D

解析:百位和千位看做一个数列,是18,15,12,9,构成公差为-3的等差数列,所以下一项应为6;十位和个位看做一个数列,是06,10,14,18,构成公差为4的等差数列,所以下一项应为22。故未知项应为622。故选D。86、甲、乙两人在一条400米的环形跑道上从相距200米的位置出发,同向匀速跑步。当甲第三次追上乙的时候,乙跑了2000米。问甲的速度是乙的多少倍?()

A、1.2

B、1.5

C、1.6

D、2.0

【答案】:答案:B

解析:环形同点同向出发每追上一次,甲比乙多跑一圈。第一次由于是不同起点,甲比乙多跑原来的差距200米;之后两次追上都多跑400米,甲一共比乙多跑200+400×2=1000(米)。乙跑了2000米,甲跑了3000米,时间相同,则速度比与路程比也相同,可知甲的速度是乙的3000÷2000=1.5倍。故选B。87、某木场有甲,乙,丙三位木匠师傅生产桌椅,甲每天能生产12张书桌或13把椅子;乙每天能生产9张书桌或12把椅子,丙每天能生产9张书桌或15把椅子,现在书桌和椅子要配套生产(每套一张书桌一把椅子),则7天内这三位师傅最多可以生产桌椅()套。

A、116

B、129

C、132

D、142

【答案】:答案:B

解析:将甲、乙、丙三位木匠师傅生产桌椅的效率列表如下,分析可知,甲生产书桌的相对效率最高,丙生产椅子的相对效率最高,则安排甲7天全部生产书桌,丙7天全部生产椅子,乙协助甲丙完成。甲7天可生产桌子12×7=84(张),丙7天可生产椅子15×7=105(把)。设乙生产书桌x天,则生产椅子(7-x)天,当生产的书桌数与椅子数相同时,获得套数最多,可列方程84+9x=105+12×(7-x),解得x=5,则乙可生产书桌9×5=45(张)。故7天内这三位师傅最多可以生产桌椅84+45=129(套)。故选B。88、1,8,9,4,(),1/6

A、3

B、2

C、1

D、1/3

【答案】:答案:C

解析:1=14,8=23,9=32,4=41,1=50,1/6=6(-1)。故选C。89、某高速公路收费站对过往车辆的收费标准是:大型车30元/辆、中型车15元/辆、小型车10元/辆。某天,通过收费站的大型车与中型车的数量比是5∶6,中型车与小型车的数量比是4∶11,小型车的通行费总数比大型车的多270元,这天的收费总额是()。

A、7280元

B、7290元

C、7300元

D、7350元

【答案】:答案:B

解析:大、中、小型车的数量比为10∶12∶33。以10辆大型车、12辆中型车、33辆小型车为一组。每组小型车收费比大型车多33×10-10×30=30元。实际多270元,说明共通过了270÷30=9组。每组收费10×30+12×15+33×10=810元,收费总额为9×810=7290元。故选B。90、2,7,14,21,294,()

A、28

B、35

C、273

D、315

【答案】:答案:D

解析:21=7+14,14=2×7,294=14×21,为两项相加、相乘交替得到后-项,即所填数字为21+294=315。故选D。91、2,6,18,54,()

A、186

B、162

C、194

D、196

【答案】:答案:B

解析:该数列是以3为公比的等比数列,故空缺项为:54×3=162。故选B。92、某水库共有10个泄洪闸,当10个泄洪闸全部打开时,8小时可将水位由警戒水位降至安全水位;只打开6个泄洪闸时,这个过程为24个小时,如水库每小时的入库量稳定,问如果打开8个泄洪闸时,需要多少小时可将水位降至安全水位?()

A、10

B、12

C、14

D、16

【答案】:答案:B

解析:设水库每小时的入库量为x。根据题意可列方程(10-x)8=(6-x)24,解得x=4,故水库警戒水位至安全水位的容量为(10-4)×8=48;设打开8个泄洪闸需t小时可将水位降至安全水位;则48=(8-4)t,解得t=12。故选B。93、2,1,2/3,1/2,()

A、3/4

B、1/4

C、2/5

D、5/6

【答案】:答案:C

解析:数列可化为4/2,4/4,4/6,4/8,分母都是4,分子2,4,6,8等差,所以后项为4/10=2/5。故选C。94、1,2,0,3,-1,4,()

A、-2

B、0

C、5

D、6

【答案】:答案:A

解析:奇数项1、0、-1、(-2)是公差为-1的等差数列;偶数项2、3、4是连续自然数。故选A。95、2,3,8,27,32,(),128

A、64

B、243

C、275

D、48

【答案】:答案:B

解析:间隔组合数列。奇数项是公比为4的等比数列,偶数项是公比为9的等比数列,所求项为27×9=(243)。故选B。96、过长方体一侧面的两条对角线交点,与下底面四个顶点连得一四棱锥,则四棱锥与长方体的体积比为多少?()

A、1:8

B、1:6

C、1:4

D、1:3

【答案】:答案:B

解析:等底等高时,椎体体积是柱体体积的,而题中椎体的高是长方体高的一半,四棱锥与长方体的体积之比为1:6。故选B。97、3,11,13,29,31,()

A、52

B、53

C、54

D、55

【答案】:答案:D

解析:奇偶项分别相差11-3=8,29-13=16=8×2,问号-31=24=8×3则可得?=55。故选D。98、2,2,6,14,34,()

A、82

B、50

C、48

D、62

【答案】:答案:A

解析:2+2×2=6;2+6×2=14;6+14×2=34;14+34×2=82。故选A。99、某班有56名学生,每人都参加了a、b、c、d、e五个兴趣班中的一个。已知有27人参加a兴趣班,参加b兴趣班的人数第二多,参加c、d兴趣班的人数相同,e兴趣班的参加人数最少,只有6人,问参加b兴趣班的学生有多少个?()

A、7个

B、8个

C、9个

D、10个

【答案】:答案:C

解析:设b班人数为x,c、d班的人数均为y,由b班人数第二多,e班人数最少,可知各班人数关系为:27>x>y>6。该班有56名学生,56=27+x+y+y+6,即x+2y=23,其中2y是偶数,23为奇数,则x为奇数,排除B、D。代入A选项,当x=7时,y=8,则x<Y,不符合题意,排除。故选C。100、某种细胞开始时有2个,1小时后分裂成4个并死去1个,2小时后分裂成6个并死去1个,3小时后分裂成10个并死去1个……按此规律,6小时后细胞存活的个数有多少?()

A、63

B、65

C、67

D、71

【答案】:答案:B

解析:1小时后细胞存活的个数为2×2-1=3;2小时后为2×3-1=5;3小时后为2×5-1=9……按此规律,n小时后细胞存活的个数为。故6小时后细胞存活的个数是(个)。故选B。101、7,21,14,21,63,(),63

A、35

B、42

C、40

D、56

【答案】:答案:B

解析:三个一组,7、21、14中第二个数是第一个数和第三个数的和,即所填数字为63-21=42。故选B。102、四人年龄为相邻的自然数列且最年长者不超过30岁,四人年龄之乘积能被2700整除且不能被81整除。则四人中最年长者多少岁?()

A、30

B、29

C、28

D、27

【答案】:答案:C

解析:结合最年长者,优先从选项最大值代入:A选项:30×29×28×27,尾数只有一个0,不能被2700整除,排除;B选项:29×28×27×26,尾数不为0,不能被2700整除,排除;C选项:28×27×26×25=(4×7)×27×26×25,能被2700整除,不能被81整除,正确。故选C。103、张大伯卖白菜,开始定价是每千克5角钱,一点都卖不出去,后来每千克降低了几分钱,全部白菜很快卖了出去,一共收入22.26元,则每千克降低了几分钱?

A、3

B、4

C、6

D、8

【答案】:答案:D

解析:代入法,只有降8分时收入才能被价格整除。(2226=2×3×7×53=42×53)。故选D。104、超市有一批酒需要入库,单独干这项工作,小明需要15小时,小军需要18小时。如果小明和小军一起干了5小时后,剩下的由小军独自完成,若这时小军的效率提高40%,则还需要几小时才能完成?()

A、5

B、17

C、12

D、11

【答案】:答案:A

解析:设总工作量为90,则小明的效率为6,小军的效率为5。开始时两人合作了5个小时,共完成工作量(6+5)×5=55,还剩90-55=35。这时小军的效率为5×(1+40%)=7,剩下的工作小军还需35÷7=5小时才能完成。故选A。105、41,59,32,68,72,()

A、28

B、36

C、40

D、48

【答案】:答案:A

解析:两两分组得到(41,59),(32,68),(72,()),发现组内做和均为100。故选A。106、2.1,2.2,4.1,4.4,16.1,()

A、32.4

B、16.4

C、32.16

D、16.16

【答案】:答案:D

解析:偶数项的小数部分和整数部分相同。故选D。107、1,2,6,30,210,()

A、1890

B、2310

C、2520

D、2730

【答案】:答案:B

解析:2÷1=2,6÷2=3,30÷6=5,210÷30=7,相邻两项后一项除以前一项的商构成连续的质数列,即所填数字为210×11=2310。故选B。108、6,3,5,13,2,63,()

A、-36

B、-37

C、-38

D、-39

【答案】:答案:B

解析:6×3-5=13,3×5-13=2,5×13-2=63,第四项=第一项×第二项-第三项,即所填数字为13×2-63=-37。故选B。109、3,30,129,348,()

A、532

B、621

C、656

D、735

【答案】:答案:D

解析:3=13+2、30=33+3、129=53+4、348=73+5,其中底数1、3、5、7构成连续的奇数列,另一部分2、3、4、5是连续的自然数,即所填数字为93+6=735。故选D。110、如果现在是18点整,那么分针旋转1990圈之后是几点钟?()

A、16

B、17

C、18

D、19

【答案】:答案:A

解析:分针旋转1圈为一小时,所以分针旋转12圈,时针旋转1圈,仍为18点整。由“1990÷12=165余10”可知,此时时钟表示的时间应是16点整。故选A。111、商店购入一百多件A款服装,其单件进价为整数元,总进价为1万元,已知单件B款服装的定价为其进价的1.6倍,其进价为A款服装的75%,销售每件B款服装的利润为A款服装的一半,某日商店以定价销售A款服装的总销售额超过2500元,问当天至少销售了多少件A款服装?()

A、13

B、15

C、17

D、19

【答案】:答案:C

解析:推出A款服装有125件,进价为80元,B款服装进价为80×0.75=60(元),B款服装定价为60×1.6=96(元),利润为96-60=36(元),A款服装利润为36×2=72(元),所以A款服装售价为80+72=152(元)。销售数量至少为2500÷152=16.4,取整为17件。故选C。112、30个小朋友围成一圈玩传球游戏,每次球传给下一个小朋友需要1秒。当老师喊“转向”时,要改变传球方向。如果从小华开始传球,老师在游戏开始后的第16、31、49秒喊“转向”,那么在第多少秒时,球会重新回到小华手上?()

A、68

B、69

C、70

D、71

【答案】:答案:A

解析:设小华的位置为0号,按顺时针方向编号依次为0号、1号、2号、……、29号。小华以顺时针方向开始传球。①经过16秒,顺时针传到16号;②转向:经过15秒(31-16=15),逆时针传到1号;③转向:经过18秒(49-31=18),顺时针传到19号;④转向:经过19秒,逆时针传回到小华手中。在第49+19=68(秒)时,球会重新回到小华手上。故选A。113、1/5,1/3,3/7,1/2,()

A、5/9

B、1/6

C、6

D、3/5

【答案】:答案:A

解析:1/3写成2/6,1/2写成4/8,分子分母均是公差为1的等差数列。故选A。114、-24,3,30,219,()

A、289

B、346

C、628

D、732

【答案】:答案:D

解析:-24=(-3)3+3,3=03+3,30=33+3,219=63+3,即所填数字为93+3=732。故选D。115、7.1,8.6,14.2,16.12,28.4,()

A、32.24

B、30.4

C、32.4

D、30.24

【答案】:答案:A

解析:奇数项和偶数项间隔来看,整数部分和小数部分分别构成公比为2的等比数列。故选A。116、2,7,13,20,25,31,()

A、35

B、36

C、37

D、38

【答案】:答案:D

解析:依次将相邻两个数中后一个数减去前一个数得5,6,7,5,6,为(5,6,7)三个数字组成的循环数列,即所填数字为31+7=38。故选D。117、3,4,10,33,136,()

A、685

B、424

C、314

D、149

【答案】:答案:A

解析:4=(3+1)×1,10=(4+1)×2,33=(10+1)×3,136=(33+1)×4,an=(an-1+1)×(n-1)(n≥2),即所填数字应为(136+1)×5=685。故选A。118、某商店以5元/斤的价格购入一批蔬菜,上午以8元/斤的价格卖出总进货量的60%,中午以上午售出价的8折卖出总进货量的20%,下午以中午售出价的一半卖出剩余货量的一半,最后获利210元。则该商店一共购入多少斤蔬菜?()

A、140

B、150

C、160

D、180

【答案】:答案:B

解析:赋值购进的量为10斤,上午以8元/斤的价格卖出6斤,中午以6.4元/斤的价格卖出2斤,下午以3.2元/斤的价格卖出1斤,总收入=8×6+6.4×2+3.2×1=64元,总利润=64-5×10=14元,实际购入(210/14)×10=150斤。故选B。119、60名员工投票从甲、乙、丙三人中评选最佳员工,选举时每人只能投票选举一人,得票最多的人当选。开票中途累计,前30张选票中,甲得15票,乙得10票,丙得5票。问在尚未统计的选票中,甲至少再得多少票就一定当选?()

A、15

B、13

C、10

D、8

【答案】:答案:B

解析:构造最不利,由题意,还剩30名员工没有投票,考虑最不利的情况,乙对甲的威胁最大,先给乙5张选票,甲乙即各有15张选票,其余25张选票中,甲只要在获得13张选票就可以确定当选。故选B。120、2,6,13,39,15,45,23,()

A、46

B、66

C、68

D、69

【答案】:答案:D

解析:6=2×3,39=13×3,45=15×3。两个数为一组,每组中的第二个数是第一个数的三倍,即所填数字为23×3=69。故选D。121、8,6,-4,-54,()

A、-118

B、-192

C、-320

D、-304

【答案】:答案:D

解析:依次将相邻两个数中后一个数减去前一个数得-2,-10,-50,构成公比为5的等比数列,即所填数字为-54+(-250)=-304。故选D。122、某年的10月里有5个星期六,4个星期日,则这年的10月1日是?()

A、星期一

B、星期二

C、星期三

D、星期四

【答案】:答案:D

解析:10月有31天,因为有5个星期六,4个星期日,所以10月31日是星期六。31=4×7+3,所以10月3日也是星期六,故10月1日是星期四。故选D。123、187,259,448,583,754,()

A、847

B、862

C、915

D、944

【答案】:答案:B

解析:各项数字和均为16。故选B。124、21,27,40,61,94,148,()

A、239

B、242

C、246

D、252

【答案】:答案:A

解析:依次将相邻两项作差得6,13,21,33,54;二次作差得7,8,12,21;再次作差得12,22,32,是连续自然数的平方。即所填数字为42+21+54+148=239。故选A。125、10,9,17,50,()

A、100

B、99

C、199

D、200

【答案】:答案:C

解析:10×1-1=9;9×2-1=17;17×3-1=50;50×4-1=199。故选C。126、5,7,4,6,4,6,()

A、4

B、5

C、6

D、7

【答案】:答案:B

解析:依次将相邻两个数中后一个数减去前一个数得2,-3,2,-2,2,奇数项是2,偶数项构成公差为1的等差数列,即所填数字为6+(-1)=5。故选B。127、8,9,18,23,30,()

A、33

B、36

C、41

D、48

【答案】:答案:B

解析:依次将相邻两个数中后一个数减去前一个数得1,9,5,7,再次作差得8,-4,2,构成公比为-0.5的等比数列,即所填数字为2×(-0.5)+7+30=36。故选B。128、1,2,3,6,12,24,()

A、48

B、45

C、36

D、32

【答案】:答案:A

解析:1+2=3,1+2+3=6,1+2+3+6=12,1+2+3+6+12=24,第N项=第N-1项+…+第一项,即所填数字为1+2+3+6+12+24=48。故选A。129、2,3,13,175,()

A、30625

B、30651

C、30759

D、30952

【答案】:答案:B

解析:第一项乘以2,然后加第二项的平方等于第三项。2×2+3×3=13。第二项乘以2,然后加第三项的平方等于第四项。3×2+13×13=175。第三项乘以2,然后加第四项的平方等于第五项。13×2+175×175=30651。故选B。130、130,68,30,(),2

A、11

B、12

C、10

D、9

【答案】:答案:C

解析:130=53+5,68=43+4,30=33+3,10=23+2,2=13+1。故选C。131、3,7,17,115,()

A、132

B、277

C、1951

D、1955

【答案】:答案:C

解析:3×7-4=17,7×17-4=115,即所填数字为17×115-4=1951。故选C。132、某木场有甲,乙,丙三位木匠师傅生产桌椅,甲每天能生产12张书桌或13把椅子;乙每天能生产9张书桌或12把椅子,丙每天能生产9张书桌或15把椅子,现在书桌和椅子要配套生产(每套一张书桌一把椅子),则7天内这三位师傅最多可以生产桌椅()套。

A、116

B、129

C、132

D、142

【答案】:答案:B

解析:将甲、乙、丙三位木匠师傅生产桌椅的效率列表如下,分析可知,甲生产书桌的相对效率最高,丙生产椅子的相对效率最高,则安排甲7天全部生产书桌,丙7天全部生产椅子,乙协助甲丙完成。甲7天可生产桌子12×7=84(张),丙7天可生产椅子15×7=105(把)。设乙生产书桌x天,则生产椅子(7-x)天,当生产的书桌数与椅子数相同时,获得套数最多,可列方程84+9x=105+12×(7-x),解得x=5,则乙可生产书桌9×5=45(张)。故7天内这三位师傅最多可以生产桌椅84+45=129(套)。故选B。133、将17拆分成若干个自然数的和,这些自然数的乘积的最大值是多少?()

A、256

B、486

C、556

D、376

【答案】:答案:B

解析:若把一个整数拆分成若干个自然数之和,有大于4的数,则把大于4的这个数再分成一个2与另一个大于2的自然数之和,则这个2与大于2的这个数的乘积肯定比这个大于4的数更大。另外,如果拆分的数中含有1,则对乘积增大没有贡献,因此不能考虑。因此,要使加数之积最大,加数只能是2和3。但是,若加数中含有3个2,则不如将它换成2个3。因为2×2×2=8,而3×3=9。故拆分出的自然数中,至多含有两个2,而其余都是3。故将17拆分为17=3+3+3+3+3+2时,其乘积最大,最大值为243×2=486。故选B。134、2,11,32,()

A、56

B、42

C、71

D、134

【答案】:答案:C

解析:观察题干数列可得:2=13+1,11=23+3,32=33+5,()=43+7。故括号处应为71。故选C。135、2,3,6,18,108,()

A、1944

B、1620

C、1296

D、1728

【答案】:答案:A

解析:2×3=6,3×6=18,6×18=108,……前两项相乘等于下一项,则所求项为18×108,尾数为4。故选A。136、一只天平有7克、2克砝码各一个,如果需要将140克的盐分成50克、90克各一份,至少要称几次?()

A、六

B、五

C、四

D、三

【答案】:答案:D

解析:第一步,用天平将140g分成两份,每份70g;第二步,将其中的一份70g,平均分成两份35g;第三步,将砝码分别放在天平的两边,将35g盐放在天平两边至平衡,则每边为(35+7+2)÷2=22g,则砝码为2g的一边,盐就为20g,将其与第一步剩下的70g盐混合,得到90g,剩下的就是50g。即一共称了三次。故选D。137、4,5,9,18,34,()

A、59

B、37

C、46

D、48

【答案】:答案:A

解析:该数列的后项减去前项得到一个平方数列,故空缺处应为34+25=59。故选A。138、7,9,-1,5,()

A、3

B、-3

C、2

D、-2

【答案】:答案:B

解析:第三项=(第一项-第二项)/2=>-1=(7-9)/25=(9-(-1))/2-3=(-1-5)/2。故选B。139、78,9,64,17,32,19,()

A、18

B、20

C、22

D、26

【答案】:答案:A

解析:两两相加=>87、73、81、49、51、37=>每项除以3,则余数为=>0、1、0、1、0、1。故选A。140、0,6,24,60,()

A、70

B、80

C、100

D、120

【答案】:答案:D

解析:0=0×1×2,6=1×2×3,24=2×3×4,60=3×4×5,()=4×5×6=120。另解,0=13-1,6=23-2,24=33-3,60=43-4,()=53-5=120。故选D。141、三个学校的志愿队分别去敬老院照顾老人,A学校志愿队每隔7天去一次,B学校志愿队每隔9天去一次,C学校志愿队每隔14天去一次,三个队伍周三第一次同时去敬老院,问下次同时去敬老院是周几?()

A、周三

B、周四

C、周五

D、周六

【答案】:答案:B

解析:根据每隔7天去一次,可知A每8天去一次敬老院,同理,B、C每10天、15天去一次敬老院。下次同时去敬老院应该为120(8、10、15的最小公倍数)天后。每周7天,120÷7=17…1,故三人下次同时去敬老院应该是周三后推一天,即周四。故选B。142、1,11,21,31,()

A、39

B、49

C、41

D、51

【答案】:答案:C

解析:题中数列为公差为10的等差数列,故()=31+10=41。故选C。143、2/3,1/2,3/7,7/18,()

A、4/11

B、5/12

C、7/15

D、3/16

【答案】:答案:A

解析:4/11,2/3=4/6,1/2=5/10,3/7=6/14,…分子是4、5、6、7,接下来是8.分母是6、10、14、18,接下来是22。故选A。144、-2,1,31,70,112,()

A、154

B、155

C、256

D、280

【答案】:答案:B

解析:依次将相邻两项做差得3、30、39、42,再次做差得27、9、3,是公比为1/3的等比数列,即所填数字为(3÷3)+42+112=155。故选B。145、从A地到B地为上坡路。自行车选手从A地出发按A-B-A-B的路线行进,全程平均速度为从B地出发,按B-A-B-A的路线行进的全程平均速度的4/5,如自行车选手在上坡路与下坡路上分别以固定速度匀速骑行,问他上坡的速度是下坡速度的()。

A、1/2

B、1/3

C、2/3

D、3/5

【答案】:答案:A

解析:S=VT,当S一定的时候,VT成反比,两次行程的平均速度之比是4:5,故两次行程所用时间之比T1:T2=5:4。设一个下坡的时间是1,一个上坡的时间是n,则上坡速度是下坡速度的1/n。A-B-A-B的过程经历了2个上坡和1个下坡,则T1=2n+1;B-A-B-A的过程经历了2个下坡和1个上坡,则T2=2+n,而T1:T2=5:4=(2n+1):(2+n),解得n=2。故选A。146、某城市居民用水价格为:每户每月不超过5吨的部分按4元/吨收取;超过5吨不超过10吨的部分按6元/吨收取;超过10吨的部分按8元/吨收取。某户居民两个月共交水费108元,则该户居民这两个月用水总量最多为多少吨?()

A、17.25

B、21

C、21.33

D、24

【答案】:答案:B

解析:总费用一定,要使两个月的用水总量最多,需尽量使用低价水。先将两个月4元/吨的额度用完,花费4×5×2=40(元);再将6元/吨的额度用完,花费6×5×2=60(元)。由两个月共交水费108元可知,还剩108-40-60=8(元),可购买1吨单价为8元/吨的水。该户居民这两个月用水总量最多为5×2+5×2+1=21(吨)。故选B。147、1/2,1,1,(),9/11,11/13

A、2

B、3

C、1

D、9

【答案】:答案:C

解析:1/2,1,1,(),9/11,11/13=>1/2,3/3,5/5,7/7,9/11,11/13=>分子1,3,5,7,9,11等差;分母2,3,5,7,11,13连续质数列。故选C。148、某年的10月里有5个星期六,4个星期日,则这年的10月1日是?()

A、星期一

B、星期二

C、星期三

D、星期四

【答案】:答案:D

解析:10月有31天,因为有5个星期六,4个星期日,所以10月31日是星期六。31=4×7+3,所以10月3日也是星期六,故10月1日是星期四。故选D。149、某班一次数学测试,全班平均91分,其中男生平均88分,女生平均93分,则女生人数是男生人数的多少倍?()

A、0.5

B、1

C、1.5

D、2

【答案】:答案:C

解析:设男生、女生人数分别为x、y,可得88x+93y=91(x+y),解得,即女生是男生的1.5倍。故选C。150、A、B、C三个试管中各盛有10克、20克、30克水,把某种浓度的盐水10克倒入A中,充分混合后从A中取出10克倒入B中,再充分混合后从B中取出10克倒入C中,最后得到C中盐水的浓度为0.5%。则开始倒入试管A中的盐水浓度是多少?()

A、12%

B、15%

C、18%

D、20%

【答案】:答案:A

解析:C中含盐量为(30+10)×0.5%=0.2克,即从B中取出的10克中含盐0.2克,则B的浓度为0.2÷10=2%,进而求出B中含盐量为(20+10)×2%=0.6克,即从A中取出的10克中含盐0.6克,可得A的浓度为0.6÷10=6%,进一步得出A中含盐量为(10+10)×6%=1.2克,故开始倒入A中的盐水浓度为1.2÷10=12%。故选A。151、张大伯卖白菜,开始定价是每千克5角钱,一点都卖不出去,后来每千克降低了几分钱,全部白菜很快卖了出去,一共收入22.26元,则每千克降低了几分钱?

A、3

B、4

C、6

D、8

【答案】:答案:D

解析:代入法,只有降8分时收入才能被价格整除。(2226=2×3×7×53=42×53)。故选D。152、[(9,6)42(7,7)][(7,3)40(6,4)][(8,2)()(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论