第1章 全等三角形 章末测试卷(基础卷)(解析版)-2024学年八年级数学上册(苏科版)_第1页
第1章 全等三角形 章末测试卷(基础卷)(解析版)-2024学年八年级数学上册(苏科版)_第2页
第1章 全等三角形 章末测试卷(基础卷)(解析版)-2024学年八年级数学上册(苏科版)_第3页
第1章 全等三角形 章末测试卷(基础卷)(解析版)-2024学年八年级数学上册(苏科版)_第4页
第1章 全等三角形 章末测试卷(基础卷)(解析版)-2024学年八年级数学上册(苏科版)_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第第页第一单元全等三角形(基础卷)(考试时间:45分钟试卷满分:100分)选择题(本题共10小题,每小题3分,共30分)。1.已知图中的两个三角形全等,则∠α的度数是()A.72° B.60° C.58° D.50°【答案】A【解答】解:∵图中的两个三角形全等,∴a与a,c与c分别是对应边,那么它们的夹角就是对应角,∴∠α=72°.故选:A.2.如图,若△ABC≌△DEF,且BE=8,CF=2,则BF的长为()A.2 B.3 C.5 D.8【答案】B【解答】解:∵△ABC≌△DEF,∴BC=EF,∵BF=BC﹣FC,CE=FE﹣FC,∴BF=CE,∵BE=8,CF=2,∴CF=BE﹣CE﹣BF,即2=8﹣2BF.∴BF=3.故选:B.3.如图,在△ABC和△ABD中,已知AC=AD,则添加以下条件,仍不能判定△ABC≌△ABD的是()A.BC=BD B.∠ABC=∠ABD C.∠C=∠D=90° D.∠CAB=∠DAB【答案】B【解答】解:A、根据SSS可判定△ABC≌△ABD,故本选项不符合题意;B、根据SSA不能判定△ABC≌△ABD,故本选项符合题意;C、根据HL可判定△ABC≌△ABD,故本选项不符合题意;D、根据SAS可判定△ABC≌△ABD,故本选项不符合题意;故选:B.4.如图,小明书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么小明画图的依据是()A.SSS B.SAS C.AAS D.ASA【答案】D【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选:D.5.如图所示中的4×4的正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+∠7=()A.330° B.315° C.300° D.245°【答案】B【解答】解:在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠ACB=∠1,∵∠ACB+∠7=90°,∴∠1+∠7=90°,同理可得:∠2+∠6=90°,∠3+∠5=90°,∵∠4=45°,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=315°,故选:B.6.如图是一个平分角的仪器,其中AB=AD,BC=DC.将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是这个角的平分线.此仪器的原理是()A.SSS B.SAS C.ASA D.AAS【答案】A【解答】解:在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,即AE是∠DAE的平分线,故选:A.7.如图,在△ABC中,AD⊥BC于点D,BE⊥AC于点E,AD,BE交于点F,△ADC≌△BDF,若BD=4,CD=2,则△ABC的面积为()A.24 B.18 C.12 D.8【答案】C【解答】解:∵△ADC≌△BDF,∴AD=BD,∵BD=4,∴AD=4,∵DC=2,∴BC=BD+DC=4+2=6,∴S△ABC===12,故选:C.8.如图,∠C=∠CAM=90°,AC=8cm,BC=4cm,点P在线段AC上,以2cm/s速度从点A出发向点C运动,到点C停止运动.点Q在射线AM上运动,且PQ=AB.若△ABC与△PQA全等,则点P运动的时间为()A.4s B.2s C.2s或3s或4s D.2s或4s【答案】D【解答】解:当△ABC≌△PQA时,AP=AC=8,∵点P的速度为2cm/s,∴8÷2=4(s);当△ABC≌△QPA时,当AP=BC=4,∵点P的速度为2cm/s,∴4÷2=2(s)故选:D.9.如图,已知△ABC≌△AEF,其中AB=AE,∠B=∠E.在下列结论①AC=AF,②∠BAF=∠B,③EF=BC,④∠BAE=∠CAF中,正确的个数有()A.1个 B.2个 C.3个 D.4个【答案】C【解答】解:∵△ABC≌△AEF,∴AC=AF,EF=BC,故①③正确;∠EAF=∠BAC,∴∠EAB=∠FAC,故④正确;∵AF≠BF,∴∠BAF≠∠B,故②错误;综上所述,结论正确的是①③④共3个.故选:C.10.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE,下列说法:①△ABD和△ACD面积相等;②∠BAD=∠CAD;③△BDF≌△CDE;④BF∥CE;⑤CE=AE.其中正确的是()A.①② B.③⑤ C.①③④ D.①④⑤【答案】C【解答】解:∵AD是△ABC的中线,∴BD=CD,∴△ABD和△ACD面积相等,故①正确;∵AD为△ABC的中线,∴BD=CD,∠BAD和∠CAD不一定相等,故②错误;在△BDF和△CDE中,,∴△BDF≌△CDE(SAS),故③正确;∴∠F=∠DEC,∴BF∥CE,故④正确;∵△BDF≌△CDE,∴CE=BF,故⑤错误,正确的结论为:①③④,故选:C.填空题(本题共6题,每小题3分,共18分)。11.已知△ABC≌△DEF,∠A=30°,∠E=50°,则∠C=.【答案】见试题解答内容【解答】解:∵△ABC≌△DEF,∴∠B=∠E=50°,∴∠C=180°﹣∠A﹣∠B=100°,故答案为:100°.12.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=.【答案】见试题解答内容【解答】解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠1=∠EAC,在△BAD和△CAE中,∴△BAD≌△CAE(SAS),∴∠2=∠ABD=30°,∵∠1=25°,∴∠3=∠1+∠ABD=25°+30°=55°,故答案为:55°.13.如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为.【答案】见试题解答内容【解答】解:∵∠ABC=45°,AD⊥BC,∴AD=BD.∵∠1=∠3(同角的余角相等),∠1+∠2=90°,∠3+∠4=90°,∴∠2=∠4.在△ADC和△BDH中,∵,∴△ADC≌△BDH(AAS),∴BH=AC=4.故答案是:4.14.如图,点B在AE上,∠CBE=∠DBE,要使△ABC≌△ABD,还需添加一个条件是(填上适当的一个条件即可)【答案】见试题解答内容【解答】解:BC=BD,理由是:∵∠CBE=∠DBE,∠CBE+∠ABC=180°,∠DBE+∠ABD=180°,∴∠ABC=∠ABD,在△ABC和△ABD中∴△ABC≌△ABD,故答案为:BC=BD.15.如图,△ABC的三个顶点分别在格子的3个顶点上,请你试着再在图中的格子的顶点上找出一个点D,使得△DBC与△ABC全等,这样的三角形有个.【答案】见试题解答内容【解答】解:如图所示:D的位置有3个.故答案为:3.16.如图,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=40°,连接AC,BD交于点M,连接OM.下列结论:①AC=BD;②∠AMB=40°;③OM平分∠BOC;④MO平分∠BMC.其中正确的是.【答案】见试题解答内容【解答】解:∵∠AOB=∠COD=40°,∴∠AOB+∠AOD=∠COD+∠AOD,即∠AOC=∠BOD,在△AOC和△BOD中,,∴△AOC≌△BOD(SAS),∴∠OCA=∠ODB,AC=BD,①正确;∴∠OAC=∠OBD,由三角形的外角性质得:∠AMB+∠OAC=∠AOB+∠OBD,∴∠AMB=∠AOB=40°,②正确;作OG⊥MC于G,OH⊥MB于H,如图2所示:则∠OGC=∠OHD=90°,在△OCG和△ODH中,,∴△OCG≌△ODH(AAS),∴OG=OH,∴MO平分∠BMC,④正确;∵∠AOB=∠COD,∴当∠DOM=∠AOM时,OM才平分∠BOC,假设∠DOM=∠AOM∵△AOC≌△BOD,∴∠COM=∠BOM,∵MO平分∠BMC,∴∠CMO=∠BMO,在△COM和△BOM中,,∴△COM≌△BOM(ASA),∴OB=OC,∵OA=OB∴OA=OC与OA>OC矛盾,∴③错误;正确的有①②④;故答案为:①②④.三、解答题(本题共5题,17题-20题,每题10分,21题12分)。17.AC和BD相交于点O,OA=OC,OB=OD.(1)求证:∠A=∠C;(2)求证:AB∥CD.【答案】见试题解答内容【解答】证明:∵OA=OC,OB=OD,∠AOB=∠COD,∴△AOB≌△COD.∴∠A=∠C.∴AB∥CD.18.已知:如图,AC,DB相交于点O,AB=DC,∠ABO=∠DCO.求证:(1)△ABO≌△DCO;(2)∠OBC=∠OCB.【答案】见解析.【解答】证明:(1)在△ABO和△DCO中,,∴△ABO≌△DCO(AAS);(2)由(1)知,△ABO≌△DCO,∴OB=OC∴∠OBC=∠OCB.19.如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.(1)求证:Rt△ABE≌Rt△CBF;(2)若∠CAE=30°,求∠ACF的度数.【答案】见试题解答内容【解答】(1)证明:∵∠ABC=90°,∴∠CBF=∠ABE=90°,在Rt△ABE和Rt△CBF中,,∴Rt△ABE≌Rt△CBF(HL);(2)解:∵∠ABC=90°,∠BAC=45°,∴∠ACB=45°,又∵∠BAE=∠CAB﹣∠CAE=45°﹣30°=15°,由(1)知:Rt△ABE≌Rt△CBF,∴∠BCF=∠BAE=15°,∴∠ACF=∠BCF+∠ACB=45°+15°=60°.20.如图,Rt△ACB中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H(1)求∠APB度数;(2)求证:△ABP≌△FBP;(3)求证:AH+BD=AB.【答案】见试题解答内容【解答】解:(1)∵AD平分∠BAC,BE平分∠ABC,∴∠PAB+∠PBA=(∠ABC+∠BAC)=45°,∴∠APB=180°﹣45°=135°;(2)∵∠APB=135°,∴∠DPB=45°,∵PF⊥AD,∴∠BPF=135°,在△ABP和△FBP中,,∴△ABP≌△FBP(ASA);(3)∵△ABP≌△FBP,∴∠F=∠BAD,AP=PF,AB=BF,∵∠BAD=∠CAD,∴∠F=∠CAD,在△APH和△FPD中,,∴△APH≌△FPD(ASA),∴AH=DF,∵BF=DF+BD,∴AB=AH+BD.21.以点A为顶点作两个等腰直角三角形(△ABC,△ADE),如图1所示放置,使得一直角边重合,连接BD,CE.(1)说明BD=CE;(2)延长BD,交CE于点F,求∠BFC的度数;(3)若如图2放置,上面的结论还成立吗?请简单说明理由.【答案】见试题解答内容【解答】解:(1)∵△ABC、△ADE是等腰直角三角形,∴AB=AC,∠BAD=∠EAC=90°,AD=AE,∵在△ADB和△AEC中,,∴△ADB≌△AEC(SAS),∴BD=CE;(2)∵△ADB≌△AEC,∴∠ACE=∠ABD,而在△CDF中,∠BFC=180°﹣∠ACE﹣∠CDF又∵∠

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论