2023-2024学年陕西省安康市汉阴县第二高级中学高考仿真卷数学试卷含解析_第1页
2023-2024学年陕西省安康市汉阴县第二高级中学高考仿真卷数学试卷含解析_第2页
2023-2024学年陕西省安康市汉阴县第二高级中学高考仿真卷数学试卷含解析_第3页
2023-2024学年陕西省安康市汉阴县第二高级中学高考仿真卷数学试卷含解析_第4页
2023-2024学年陕西省安康市汉阴县第二高级中学高考仿真卷数学试卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年陕西省安康市汉阴县第二高级中学高考仿真卷数学试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合A,B=,则A∩B=A. B. C. D.2.已知椭圆:的左,右焦点分别为,,过的直线交椭圆于,两点,若,且的三边长,,成等差数列,则的离心率为()A. B. C. D.3.已知等差数列中,则()A.10 B.16 C.20 D.244.设为定义在上的奇函数,当时,(为常数),则不等式的解集为()A. B. C. D.5.“”是“”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件6.已知抛物线的焦点为,对称轴与准线的交点为,为上任意一点,若,则()A.30° B.45° C.60° D.75°7.设双曲线的左右焦点分别为,点.已知动点在双曲线的右支上,且点不共线.若的周长的最小值为,则双曲线的离心率的取值范围是()A. B. C. D.8.设点是椭圆上的一点,是椭圆的两个焦点,若,则()A. B. C. D.9.正项等差数列的前和为,已知,则=()A.35 B.36 C.45 D.5410.已知为抛物线的焦点,点在抛物线上,且,过点的动直线与抛物线交于两点,为坐标原点,抛物线的准线与轴的交点为.给出下列四个命题:①在抛物线上满足条件的点仅有一个;②若是抛物线准线上一动点,则的最小值为;③无论过点的直线在什么位置,总有;④若点在抛物线准线上的射影为,则三点在同一条直线上.其中所有正确命题的个数为()A.1 B.2 C.3 D.411.陀螺是中国民间最早的娱乐工具,也称陀罗.如图,网格纸上小正方形的边长为,粗线画出的是某个陀螺的三视图,则该陀螺的表面积为()A. B.C. D.12.已知椭圆:的左、右焦点分别为,,过的直线与轴交于点,线段与交于点.若,则的方程为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知为双曲线:的左焦点,直线经过点,若点,关于直线对称,则双曲线的离心率为__________.14.若实数,满足,则的最小值为__________.15.设复数满足,其中是虚数单位,若是的共轭复数,则____________.16.戊戌年结束,己亥年伊始,小康,小梁,小谭,小杨,小刘,小林六人分成四组,其中两个组各2人,另两个组各1人,分别奔赴四所不同的学校参加演讲,则不同的分配方案有_________种(用数字作答),三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数().(1)讨论的单调性;(2)若对,恒成立,求的取值范围.18.(12分)的内角、、所对的边长分别为、、,已知.(1)求的值;(2)若,点是线段的中点,,求的面积.19.(12分)已知函数,.(1)若时,解不等式;(2)若关于的不等式在上有解,求实数的取值范围.20.(12分)已知函数.(1)求函数f(x)的最小正周期;(2)求在上的最大值和最小值.21.(12分)已知在中,角,,的对边分别为,,,且.(1)求的值;(2)若,求面积的最大值.22.(10分)在角中,角A、B、C的对边分别是a、b、c,若.(1)求角A;(2)若的面积为,求的周长.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

先解A、B集合,再取交集。【详解】,所以B集合与A集合的交集为,故选A【点睛】一般地,把不等式组放在数轴中得出解集。2、C【解析】

根据等差数列的性质设出,,,利用勾股定理列方程,结合椭圆的定义,求得.再利用勾股定理建立的关系式,化简后求得离心率.【详解】由已知,,成等差数列,设,,.由于,据勾股定理有,即,化简得;由椭圆定义知的周长为,有,所以,所以;在直角中,由勾股定理,,∴离心率.故选:C【点睛】本小题主要考查椭圆离心率的求法,考查椭圆的定义,考查等差数列的性质,属于中档题.3、C【解析】

根据等差数列性质得到,再计算得到答案.【详解】已知等差数列中,故答案选C【点睛】本题考查了等差数列的性质,是数列的常考题型.4、D【解析】

由可得,所以,由为定义在上的奇函数结合增函数+增函数=增函数,可知在上单调递增,注意到,再利用函数单调性即可解决.【详解】因为在上是奇函数.所以,解得,所以当时,,且时,单调递增,所以在上单调递增,因为,故有,解得.故选:D.【点睛】本题考查利用函数的奇偶性、单调性解不等式,考查学生对函数性质的灵活运用能力,是一道中档题.5、A【解析】

首先利用二倍角正切公式由,求出,再根据充分条件、必要条件的定义判断即可;【详解】解:∵,∴可解得或,∴“”是“”的充分不必要条件.故选:A【点睛】本题主要考查充分条件和必要条件的判断,二倍角正切公式的应用是解决本题的关键,属于基础题.6、C【解析】

如图所示:作垂直于准线交准线于,则,故,得到答案.【详解】如图所示:作垂直于准线交准线于,则,在中,,故,即.故选:.【点睛】本题考查了抛物线中角度的计算,意在考查学生的计算能力和转化能力.7、A【解析】

依题意可得即可得到,从而求出双曲线的离心率的取值范围;【详解】解:依题意可得如下图象,所以则所以所以所以,即故选:A【点睛】本题考查双曲线的简单几何性质,属于中档题.8、B【解析】∵∵∴∵,∴∴故选B点睛:本题主要考查利用椭圆的简单性质及椭圆的定义.求解与椭圆性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.9、C【解析】

由等差数列通项公式得,求出,再利用等差数列前项和公式能求出.【详解】正项等差数列的前项和,,,解得或(舍),,故选C.【点睛】本题主要考查等差数列的性质与求和公式,属于中档题.解等差数列问题要注意应用等差数列的性质()与前项和的关系.10、C【解析】

①:由抛物线的定义可知,从而可求的坐标;②:做关于准线的对称点为,通过分析可知当三点共线时取最小值,由两点间的距离公式,可求此时最小值;③:设出直线方程,联立直线与抛物线方程,结合韦达定理,可知焦点坐标的关系,进而可求,从而可判断出的关系;④:计算直线的斜率之差,可得两直线斜率相等,进而可判断三点在同一条直线上.【详解】解:对于①,设,由抛物线的方程得,则,故,所以或,所以满足条件的点有二个,故①不正确;对于②,不妨设,则关于准线的对称点为,故,当且仅当三点共线时等号成立,故②正确;对于③,由题意知,,且的斜率不为0,则设方程为:,设与抛物线的交点坐标为,联立直线与抛物线的方程为,,整理得,则,所以,则.故的倾斜角互补,所以,故③正确.对于④,由题意知,由③知,则,由,知,即三点在同一条直线上,故④正确.故选:C.【点睛】本题考查了抛物线的定义,考查了直线与抛物线的位置关系,考查了抛物线的性质,考查了直线方程,考查了两点的斜率公式.本题的难点在于第二个命题,结合初中的“饮马问题”分析出何时取最小值.11、C【解析】

画出几何体的直观图,利用三视图的数据求解几何体的表面积即可,【详解】由题意可知几何体的直观图如图:上部是底面半径为1,高为3的圆柱,下部是底面半径为2,高为2的圆锥,几何体的表面积为:,故选:C【点睛】本题考查三视图求解几何体的表面积,判断几何体的形状是解题的关键.12、D【解析】

由题可得,所以,又,所以,得,故可得椭圆的方程.【详解】由题可得,所以,又,所以,得,,所以椭圆的方程为.故选:D【点睛】本题主要考查了椭圆的定义,椭圆标准方程的求解.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

由点,关于直线对称,得到直线的斜率,再根据直线过点,可求出直线方程,又,中点在直线上,代入直线的方程,化简整理,即可求出结果.【详解】因为为双曲线:的左焦点,所以,又点,关于直线对称,,所以可得直线的方程为,又,中点在直线上,所以,整理得,又,所以,故,解得,因为,所以.故答案为【点睛】本题主要考查双曲线的简单性质,先由两点对称,求出直线斜率,再由焦点坐标求出直线方程,根据中点在直线上,即可求出结果,属于常考题型.14、【解析】

由约束条件先画出可行域,然后求目标函数的最小值.【详解】由约束条件先画出可行域,如图所示,由,即,当平行线经过点时取到最小值,由可得,此时,所以的最小值为.故答案为.【点睛】本题考查了线性规划的知识,解题的一般步骤为先画出可行域,然后改写目标函数,结合图形求出最值,需要掌握解题方法.15、【解析】

由于,则.16、1080【解析】

按照先分组,再分配的分式,先将六人分成四组,其中两个组各2人,另两个组各1人有种,再分别奔赴四所不同的学校参加演讲有种,然后用分步计数原理求解.【详解】将六人分成四组,其中两个组各2人,另两个组各1人有种,再分别奔赴四所不同的学校参加演讲有种,则不同的分配方案有种.故答案为:1080【点睛】本题主要考查分组分配问题,还考查了理解辨析的能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)①当时,在上单调递减,在上单调递增;②当时,在上单调递增;(2).【解析】

(1)求出函数的定义域和导函数,,对讨论,得导函数的正负,得原函数的单调性;(2)法一:由得,分别运用导函数得出函数(),的单调性,和其函数的最值,可得,可得的范围;法二:由得,化为令(),研究函数的单调性,可得的取值范围.【详解】(1)的定义域为,,①当时,由得,得,在上单调递减,在上单调递增;②当时,恒成立,在上单调递增;(2)法一:由得,令(),则,在上单调递减,,,即,令,则,在上单调递增,,在上单调递减,所以,即,(*)当时,,(*)式恒成立,即恒成立,满足题意法二:由得,,令(),则,在上单调递减,,,即,当时,由(Ⅰ)知在上单调递增,恒成立,满足题意当时,令,则,所以在上单调递减,又,当时,,,使得,当时,,即,又,,,不满足题意,综上所述,的取值范围是【点睛】本题考查对于含参数的函数的单调性的讨论,不等式恒成立时,求解参数的范围,属于难度题.18、(1)(2)【解析】

(1)利用正弦定理的边化角公式,结合两角和的正弦公式,即可得出的值;(2)由题意得出,两边平方,化简得出,根据三角形面积公式,即可得出结论.【详解】(1)由正弦定理得即即在中,,所以(2)因为点是线段的中点,所以两边平方得由得整理得,解得或(舍)所以的面积【点睛】本题主要考查了正弦定理的边化角公式,三角形的面积公式,属于中档题.19、(1)(2)【解析】

(1)零点分段法,分,,讨论即可;(2)当时,原问题可转化为:存在,使不等式成立,即.【详解】解:(1)若时,,当时,原不等式可化为,解得,所以,当时,原不等式可化为,解得,所以,当时,原不等式可化为,解得,所以,综上述:不等式的解集为;(2)当时,由得,即,故得,又由题意知:,即,故的范围为.【点睛】本题考查解绝对值不等式以及不等式能成立求参数,考查学生的运算能力,是一道容易题.20、(1);(2)见解析【解析】

将函数解析式化简即可求出函数的最小正周期根据正弦函数的图象和性质即可求出函数在定义域上的最大值和最小值【详解】(Ⅰ)由题意得原式的最小正周期为.(Ⅱ),.当,即时,;当,即时,.综上,得时,取得最小值为0;当时,取得最大值为.【点睛】本题主要考查了两角和与差的余弦公式展开,辅助角公式,三角函数的性质等,较为综合,也是常考题型,需要计算正确,属于基础题21、(1);(2).【解析】分析:(1)在式子中运用正弦、余弦定理后可得.(2)由经三角变换可得,然后运用余弦定理可得,从而得到,故得.详解:(1)由题意及正、余弦定理得,整理得,∴(2)由题意得,∴,∵,∴,∴.由余弦定理得,∴,,当且仅当时等号成立.∴.∴面积的最大值为.点睛:(1)正、余弦定理经常与三角形的面积综合在一起考查,解题时要注意整体代换的应用,如余弦定理中常用的变形,这样自然地与三角形的面积公式结合在一起.(2)运用基本不等式求最值时,要注意等号成立的条件,在解题中必须要注明.22、(1);(2)1.【解析】

(1)由正弦定理化简已知等式可得sinAsinB=sinBcosA,求得tanA=,结合范围A∈(0,π),可求A=.(2)利用三角形的面积公式可求bc=8,由余弦定理解得b+c=7,即可得解△ABC的周长的值.【详解】(1)由题意,在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论