版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
华中师大第一附属中学2024年高考数学倒计时模拟卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.中,点在边上,平分,若,,,,则()A. B. C. D.2.已知底面是等腰直角三角形的三棱锥P-ABC的三视图如图所示,俯视图中的两个小三角形全等,则()A.PA,PB,PC两两垂直 B.三棱锥P-ABC的体积为C. D.三棱锥P-ABC的侧面积为3.已知实数,满足,则的最大值等于()A.2 B. C.4 D.84.若为虚数单位,则复数在复平面上对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.已知实数、满足不等式组,则的最大值为()A. B. C. D.6.集合中含有的元素个数为()A.4 B.6 C.8 D.127.设向量,满足,,,则的取值范围是A. B.C. D.8.如图,已知三棱锥中,平面平面,记二面角的平面角为,直线与平面所成角为,直线与平面所成角为,则()A. B. C. D.9.已知函数,将的图象上的所有点的横坐标缩短到原来的,纵坐标保持不变;再把所得图象向上平移个单位长度,得到函数的图象,若,则的值可能为()A. B. C. D.10.若双曲线的离心率为,则双曲线的焦距为()A. B. C.6 D.811.连接双曲线及的4个顶点的四边形面积为,连接4个焦点的四边形的面积为,则当取得最大值时,双曲线的离心率为()A. B. C. D.12.若命题p:从有2件正品和2件次品的产品中任选2件得到都是正品的概率为三分之一;命题q:在边长为4的正方形ABCD内任取一点M,则∠AMB>90°的概率为π8A.p∧qB.(¬p)∧qC.p∧(¬q)D.¬q二、填空题:本题共4小题,每小题5分,共20分。13.设函数,若对于任意的,∈[2,,≠,不等式恒成立,则实数a的取值范围是.14.的展开式中的常数项为__________.15.执行如图所示的伪代码,若输出的y的值为13,则输入的x的值是_______.16.某几何体的三视图如图所示(单位:cm),则该几何体的表面积是______cm2,体积是_____三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)若曲线在处的切线为,试求实数,的值;(2)当时,若有两个极值点,,且,,若不等式恒成立,试求实数m的取值范围.18.(12分)设函数.(1)当时,解不等式;(2)若的解集为,,求证:.19.(12分)已知椭圆的左,右焦点分别为,直线与椭圆相交于两点;当直线经过椭圆的下顶点和右焦点时,的周长为,且与椭圆的另一个交点的横坐标为(1)求椭圆的方程;(2)点为内一点,为坐标原点,满足,若点恰好在圆上,求实数的取值范围.20.(12分)已知椭圆的离心率为,且过点.(Ⅰ)求椭圆的方程;(Ⅱ)设是椭圆上且不在轴上的一个动点,为坐标原点,过右焦点作的平行线交椭圆于、两个不同的点,求的值.21.(12分)如图在直角中,为直角,,,分别为,的中点,将沿折起,使点到达点的位置,连接,,为的中点.(Ⅰ)证明:面;(Ⅱ)若,求二面角的余弦值.22.(10分)求下列函数的导数:(1)(2)
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
由平分,根据三角形内角平分线定理可得,再根据平面向量的加减法运算即得答案.【详解】平分,根据三角形内角平分线定理可得,又,,,,..故选:.【点睛】本题主要考查平面向量的线性运算,属于基础题.2、C【解析】
根据三视图,可得三棱锥P-ABC的直观图,然后再计算可得.【详解】解:根据三视图,可得三棱锥P-ABC的直观图如图所示,其中D为AB的中点,底面ABC.所以三棱锥P-ABC的体积为,,,,,、不可能垂直,即不可能两两垂直,,.三棱锥P-ABC的侧面积为.故正确的为C.故选:C.【点睛】本题考查三视图还原直观图,以及三棱锥的表面积、体积的计算问题,属于中档题.3、D【解析】
画出可行域,计算出原点到可行域上的点的最大距离,由此求得的最大值.【详解】画出可行域如下图所示,其中,由于,,所以,所以原点到可行域上的点的最大距离为.所以的最大值为.故选:D【点睛】本小题主要考查根据可行域求非线性目标函数的最值,考查数形结合的数学思想方法,属于基础题.4、D【解析】
根据复数的运算,化简得到,再结合复数的表示,即可求解,得到答案.【详解】由题意,根据复数的运算,可得,所对应的点为位于第四象限.故选D.【点睛】本题主要考查了复数的运算,以及复数的几何意义,其中解答中熟记复数的运算法则,准确化简复数为代数形式是解答的关键,着重考查了推理与运算能力,属于基础题.5、A【解析】
画出不等式组所表示的平面区域,结合图形确定目标函数的最优解,代入即可求解,得到答案.【详解】画出不等式组所表示平面区域,如图所示,由目标函数,化为直线,当直线过点A时,此时直线在y轴上的截距最大,目标函数取得最大值,又由,解得,所以目标函数的最大值为,故选A.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.6、B【解析】解:因为集合中的元素表示的是被12整除的正整数,那么可得为1,2,3,4,6,,12故选B7、B【解析】
由模长公式求解即可.【详解】,当时取等号,所以本题答案为B.【点睛】本题考查向量的数量积,考查模长公式,准确计算是关键,是基础题.8、A【解析】
作于,于,分析可得,,再根据正弦的大小关系判断分析得,再根据线面角的最小性判定即可.【详解】作于,于.因为平面平面,平面.故,故平面.故二面角为.又直线与平面所成角为,因为,故.故,当且仅当重合时取等号.又直线与平面所成角为,且为直线与平面内的直线所成角,故,当且仅当平面时取等号.故.故选:A【点睛】本题主要考查了线面角与线线角的大小判断,需要根据题意确定角度的正弦的关系,同时运用线面角的最小性进行判定.属于中档题.9、C【解析】
利用二倍角公式与辅助角公式将函数的解析式化简,然后利用图象变换规律得出函数的解析式为,可得函数的值域为,结合条件,可得出、均为函数的最大值,于是得出为函数最小正周期的整数倍,由此可得出正确选项.【详解】函数,将函数的图象上的所有点的横坐标缩短到原来的倍,得的图象;再把所得图象向上平移个单位,得函数的图象,易知函数的值域为.若,则且,均为函数的最大值,由,解得;其中、是三角函数最高点的横坐标,的值为函数的最小正周期的整数倍,且.故选C.【点睛】本题考查三角函数图象变换,同时也考查了正弦型函数与周期相关的问题,解题的关键在于确定、均为函数的最大值,考查分析问题和解决问题的能力,属于中等题.10、A【解析】
依题意可得,再根据离心率求出,即可求出,从而得解;【详解】解:∵双曲线的离心率为,所以,∴,∴,双曲线的焦距为.故选:A【点睛】本题考查双曲线的简单几何性质,属于基础题.11、D【解析】
先求出四个顶点、四个焦点的坐标,四个顶点构成一个菱形,求出菱形的面积,四个焦点构成正方形,求出其面积,利用重要不等式求得取得最大值时有,从而求得其离心率.【详解】双曲线与互为共轭双曲线,四个顶点的坐标为,四个焦点的坐标为,四个顶点形成的四边形的面积,四个焦点连线形成的四边形的面积,所以,当取得最大值时有,,离心率,故选:D.【点睛】该题考查的是有关双曲线的离心率的问题,涉及到的知识点有共轭双曲线的顶点,焦点,菱形面积公式,重要不等式求最值,等轴双曲线的离心率,属于简单题目.12、B【解析】因为从有2件正品和2件次品的产品中任选2件得到都是正品的概率为P1=1C42=16,即命题p是错误,则¬p是正确的;在边长为4的正方形ABCD内任取一点M点睛:本题将古典型概率公式、几何型概率公式与命题的真假(含或、且、非等连接词)的命题构成的复合命题的真假的判定有机地整合在一起,旨在考查命题真假的判定及古典概型的特征与计算公式的运用、几何概型的特征与计算公式的运用等知识与方法的综合运用,以及分析问题解决问题的能力。二、填空题:本题共4小题,每小题5分,共20分。13、【解析】试题分析:由题意得函数在[2,上单调递增,当时在[2,上单调递增;当时在上单调递增;在上单调递减,因此实数a的取值范围是考点:函数单调性14、31【解析】
由二项式定理及其展开式得通项公式得:因为的展开式得通项为,则的展开式中的常数项为:,得解.【详解】解:,则的展开式中的常数项为:.故答案为:31.【点睛】本题考查二项式定理及其展开式的通项公式,求某项的导数,考查计算能力.15、8【解析】
根据伪代码逆向运算求得结果.【详解】输入,若,则,不合题意若,则,满足题意本题正确结果:【点睛】本题考查算法中的语言,属于基础题.16、20+45,8【解析】试题分析:由题意得,该几何体为三棱柱,故其表面积S=2×1体积V=12×4×2×2=8,故填:20+4考点:1.三视图;2.空间几何体的表面积与体积.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)根据题意,求得的值,根据切点在切线上以及斜率等于,构造方程组求得的值;(2)函数有两个极值点,等价于方程的两个正根,,不等式恒成立,等价于恒成立,,令,求出导数,判断单调性,即可得到的范围,即的范围.【详解】(1)由题可知,,,联立可得.(2)当时,,,有两个极值点,,且,,是方程的两个正根,,,不等式恒成立,即恒成立,,由,,得,,令,,在上是减函数,,故.【点睛】该题考查的是有关导数的问题,涉及到的知识点有导数的几何意义,函数的极值点的个数,构造新函数,应用导数研究函数的值域得到参数的取值范围,属于较难题目.18、(1);(2)见解析.【解析】
(1)当时,将所求不等式变形为,然后分、、三段解不等式,综合可得出原不等式的解集;(2)先由不等式的解集求得实数,可得出,将代数式变形为,将与相乘,展开后利用基本不等式可求得的最小值,进而可证得结论.【详解】(1)当时,不等式为,且.当时,由得,解得,此时;当时,由得,该不等式不成立,此时;当时,由得,解得,此时.综上所述,不等式的解集为;(2)由,得,即或,不等式的解集为,故,解得,,,,,当且仅当,时取等号,.【点睛】本题考查含绝对值不等式的求解,同时也考查了利用基本不等式证明不等式,考查推理能力与计算能力,属于中等题.19、(1);(2)或【解析】
(1)由椭圆的定义可知,焦点三角形的周长为,从而求出.写出直线的方程,与椭圆方程联立,根据交点横坐标为,求出和,从而写出椭圆的方程;(2)设出P、Q两点坐标,由可知点为的重心,根据重心坐标公式可将点用P、Q两点坐标来表示.由点在圆O上,知点M的坐标满足圆O的方程,得式.为直线l与椭圆的两个交点,用韦达定理表示,将其代入方程,再利用求得的范围,最终求出实数的取值范围.【详解】解:(1)由题意知.,直线的方程为∵直线与椭圆的另一个交点的横坐标为解得或(舍去),∴椭圆的方程为(2)设.∴点为的重心,∵点在圆上,由得,代入方程,得,即由得解得.或【点睛】本题考查了椭圆的焦点三角形的周长,标准方程的求解,直线与椭圆的位置关系,其中重心坐标公式、韦达定理的应用是关键.考查了学生的运算能力,属于较难的题.20、(Ⅰ)(Ⅱ)1【解析】
(Ⅰ)由题,得,,解方程组,即可得到本题答案;(Ⅱ)设直线,则直线,联立,得,联立,得,由此即可得到本题答案.【详解】(Ⅰ)由题可得,即,,将点代入方程得,即,解得,所以椭圆的方程为:;(Ⅱ)由(Ⅰ)知,设直线,则直线,联立,整理得,所以,联立,整理得,设,则,所以,所以.【点睛】本题主要考查椭圆标准方程的求法以及直线与椭圆的综合问题,考查学生的运算求解能力.21、(Ⅰ)详见解析;(Ⅱ).【解析】
(Ⅰ)取中点,连结、,四边形是平行四边形,由,,得,从而,,求出,由此能证明.(Ⅱ)以为原点,、、所在直线分别为,,轴,建立空间直角坐标系,利用向量法能求出二面角的余弦值.【详解】证明:(Ⅰ)取中点,连结、,∵,,∴四边形是平行四边形,∵,,,∴,∴,∴,在中,,又∵为的中点,∴,又∵,∴.解:(Ⅱ)∵,,,∴,以为原点,、、所在直线分别为,,轴,建立空
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 剧作家解聘合同证明
- 消防设备租赁协议模板
- 2024年项目评估与审计协议3篇
- 桥梁涂料施工合同
- 2025版绿色生态住宅区规划设计合同3篇
- 市场营销策略组织管理办法
- 玩具行业售后服务管理策略
- 2025版矿山土方运输及环保处理一体化合同3篇
- 2025版旅游度假合同管理规范建议合同3篇
- 2024年户外拓展食堂租赁合同含野外生存技能培训3篇
- AQ/T 1023-2006 煤矿井下低压供电系统及装备通 用安全技术要求(正式版)
- 餐馆食材订购合同
- 小学高学段学生课堂消极沉默现象及应对的研究
- 康复科发展规划方案(2篇)
- 精神病院感染管理
- 2024河北工业职业技术大学教师招聘考试笔试试题
- 地震应急演练实施方案村委会(2篇)
- 2024年合肥市梅山饭店有限公司招聘笔试冲刺题(带答案解析)
- 基础有机化学实验智慧树知到期末考试答案章节答案2024年浙江大学
- 幼儿园进餐案例及分析总结
- 2024年中考英语第一次模拟考试(南京卷)
评论
0/150
提交评论