版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省丹东市爱霜职业中学2022-2023学年高一数学文摸底试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若直角坐标平面内两点P,Q满足条件:①P,Q都在函数f(x)的图象上;②P,Q关于原点对称,则称点对(P,Q)是函数f(x)的一个“友好点对”(点对(P,Q)与点对(Q,P)为同一个“友好点对”).已知函数f(x)=则f(x)的“友好点对”有(
)个.A.0
B.1
C.2
D.4参考答案:C2.设函数,若关于x的方程f2(x)+bf(x)+c=0恰有5个不同的实数解x1,x2,x3,x4,x5,则f(x1+x2+x3+x4+x5)等于(
)(A)0 (B)2lg2 (C)3lg2 (D)1参考答案:C3.已知函数f(x)为奇函数,且当x>0时,,则f(﹣1)=()A.﹣2 B.0 C.1 D.2参考答案:A【考点】函数的值.【分析】利用奇函数的性质,f(﹣1)=﹣f(1),即可求得答案.【解答】解:∵函数f(x)为奇函数,x>0时,f(x)=x2+,∴f(﹣1)=﹣f(1)=﹣2,故选A.4.已知下列命题中:(1)若,且,则或,(2)若,则或(3)若不平行的两个非零向量,满足,则(4)若与平行,则其中真命题的个数是(
)A.
B.
C.
D.参考答案:C
解析:(1)是对的;(2)仅得;(3)
(4)平行时分和两种,5.在△ABC中,角A、B、C的对边分别为a、b、c,已知A=,a=,b=1,则c=()A.1 B.2 C.﹣1 D.参考答案:B【考点】HQ:正弦定理的应用;HS:余弦定理的应用.【分析】方法一:可根据余弦定理直接求,但要注意边一定大于0;方法二:可根据正弦定理求出sinB,进而求出c,要注意判断角的范围.【解答】解:解法一:(余弦定理)由a2=b2+c2﹣2bccosA得:3=1+c2﹣2c×1×cos=1+c2﹣c,∴c2﹣c﹣2=0,∴c=2或﹣1(舍).解法二:(正弦定理)由=,得:=,∴sinB=,∵b<a,∴B=,从而C=,∴c2=a2+b2=4,∴c=2.6.若<α<0,则点(tanα,cosα)位于(
)A.第一象限
B.第二象限
C.第三象限
D.第四象限参考答案:B7.已知为三条不同直线,为三个不同平面,则下列判断正确的是(
)A.若,,,,则B.若,,则C.若,,,则D.若,,,则参考答案:C【分析】根据线线位置关系,线面位置关系,以及面面位置关系,逐项判断,即可得出结果.【详解】A选项,当时,由,可得,此时由,可得或或与相交;所以A错误;B选项,若,,则,或相交,或异面;所以B错误;C选项,若,,,根据线面平行的性质,可得,所以C正确;D选项,若,,则或,又,则,或相交,或异面;所以D错误;故选C【点睛】本题主要考查线面,面面有关命题的判定,熟记空间中点线面位置关系即可,属于常考题型.8.在一个袋子中装有分别标注数字1,2,3,4,5,6的六个小球,这些小球除标注数字外完全相同,现从中随机取2个小球,则取出的小球标注的数字之和为3或6的概率是
(
)A.
B.
C.
D.参考答案:C9.已知,若,那么的值是()
参考答案:A10.设圆C:x2+y2=3,直线l:x+3y﹣6=0,点P(x0,y0)∈l,存在点Q∈C,使∠OPQ=60°(O为坐标原点),则x0的取值范围是()A. B.[0,1] C. D.参考答案:C【考点】点与圆的位置关系.【分析】圆O外有一点P,圆上有一动点Q,∠OPQ在PQ与圆相切时取得最大值.如果OP变长,那么∠OPQ可以获得的最大值将变小.因为sin∠OPQ=,QO为定值,即半径,PO变大,则sin∠OPQ变小,由于∠OPQ∈(0,),所以∠OPQ也随之变小.可以得知,当∠OPQ=60°,且PQ与圆相切时,PO=2,而当PO>2时,Q在圆上任意移动,∠OPQ<60°恒成立.因此,P的取值范围就是PO≤2,即满足PO≤2,就能保证一定存在点Q,使得∠OPQ=60°,否则,这样的点Q是不存在的.【解答】解:由分析可得:PO2=x02+y02又因为P在直线L上,所以x0=﹣(3y0﹣6)故10y02﹣36y0+3≤4解得,即x0的取值范围是,故选C【点评】解题的关键是结合图形,利用几何知识,判断出PO≤2,从而得到不等式求出参数的取值范围.二、填空题:本大题共7小题,每小题4分,共28分11.f(x)为偶函数且则=_____________。参考答案:4略12.已知,(1)设集合,请用列举法表示集合B;(2)求和.参考答案:解:(1)B=
………………..5分(2)
………………..7分
…………..10分
略13.如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是
.参考答案:14.已知上有两个不同的零点,则m的取值范围是________.参考答案:[1,2)略15.某学院的A,B,C三个专业共有1200名学生,为了调查这些学生勤工俭学的情况,拟采用分层抽样的方法抽取一个容量为120的样本。已知该学院的A专业有380名学生,B专业有420名学生,则在该学院的C专业应抽取____名学生。参考答案:4016.设函数的最小值是,则实数的取值范围是__________.参考答案:当时,,∵的最小值是,∴,解得:,故实数的取值范围是.17.已知f(x)=,x∈(-∞,-2],则f(x)的最小值为
.参考答案:﹣【考点】函数的最值及其几何意义.【专题】计算题.【分析】先求函数的导函数,然后判定导函数在区间上的符号,得到函数在上的单调性,从而求出最值.【解答】解:∵f(x)=,x∈(-∞,-2],∴f′(x)=﹣<0即在(-∞,-2]上单调递减则f(x)的最小值为f(﹣2)=﹣故答案为:﹣【点评】本题主要考查了函数的最值及其几何意义,以及利用导数研究函数的单调性,属于基础题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在平面直角坐标系xOy中,若角α的始边为x轴的非负半轴,其终边经过点P(2,4).(1)求tanα的值;
(2)求的值.参考答案:【考点】三角函数的化简求值;任意角的三角函数的定义.【分析】(1)直接根据任意角三角函数的定义求解即可.(2)利用诱导公式化解,“弦化切”的思想即可解决.【解答】解:(1)由任意角三角函数的定义可得:.(2)==.19.(本题12分)数列的前项和记作,满足(Ⅰ)证明数列为等比数列,并求出数列的通项公式;(Ⅱ)记,数列的前项和为,求。参考答案:(1)(2);20.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足csinA=acosC.(1)求角C的大小;(2)求的最大值,并求取得最大值时角A、B的大小。参考答案:(1)由正弦定理得因为所以(2)由(1)知于是取最大值2.综上所述,的最大值为2,此时
略21.(本小题满分12分)已知平面直角坐标系中,点O为原点,,,若,.(I)求点C和点D的坐标;(II)求.参考答案:(Ⅰ)∵=(﹣3,﹣4),=(5,﹣12),∴=+=(﹣3+5,﹣4﹣12)=(2,﹣16),=﹣=(﹣3﹣5,﹣4+12)=(﹣8,8);∴点C(2,﹣16),点D(﹣8,8);(Ⅱ)?=2×(﹣8)+(﹣16)×8=﹣144.22.已知α、β∈(0,)且α<β,若sinα=,cos(α﹣β)=,求:①cosβ的值;②tan的值.参考答案:【考点】两角和与差的余弦函数.【分析】①根据α,β的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个人理财协议书
- 全面创新科技布局
- 墙体保温板采购合同(2篇)
- 2024招投标与合同管理法律顾问服务合同2篇
- 2024森林质量精准提升
- 2024年高速路改造工程:贵黄高速房屋拆迁补偿合同
- 车辆定点维修合同书协议范本模板
- 纯人工劳务分包合同
- 19只有一个地球说课稿-2024-2025学年六年级上册语文统编版
- 27故事二则说课稿-2024-2025学年四年级上册语文统编版
- 建筑施工现场农民工维权告示牌
- 《枪炮、病菌与钢铁》-基于地理视角的历史解释(沐风学堂)
- 酒店爆炸及爆炸物品紧急处理应急预案
- 2022年版物理课程标准的特点探讨与实施建议
- 《中外资产评估准则》课件第4章 国际评估准则
- 幼儿园班级安全教育活动计划表
- 《银行柜台风险防控案例汇编》银行柜台风险案例
- 展馆精装修工程施工方案(98页)
- 香港联合交易所有限公司证券上市规则
- (高清正版)JJF 1908-2021 双金属温度计校准规范
- (高清版)严寒和寒冷地区居住建筑节能设计标准JGJ26-2018
评论
0/150
提交评论