版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第05讲垂径定理、圆心角、圆周角(6大考点)考点考点考向一.垂径定理(1)垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.(2)垂径定理的推论推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.推论2:弦的垂直平分线经过圆心,并且平分弦所对的两条弧.推论3:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.二.垂径定理的应用垂径定理的应用很广泛,常见的有:(1)得到推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.(2)垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.这类题中一般使用列方程的方法,这种用代数方法解决几何问题即几何代数解的数学思想方法一定要掌握.三.圆心角、弧、弦的关系(1)定理:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等.(2)推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.说明:同一条弦对应两条弧,其中一条是优弧,一条是劣弧,而在本定理和推论中的“弧”是指同为优弧或劣弧.(3)正确理解和使用圆心角、弧、弦三者的关系三者关系可理解为:在同圆或等圆中,①圆心角相等,②所对的弧相等,③所对的弦相等,三项“知一推二”,一项相等,其余二项皆相等.这源于圆的旋转不变性,即:圆绕其圆心旋转任意角度,所得图形与原图形完全重合.(4)在具体应用上述定理解决问题时,可根据需要,选择其有关部分.四.圆周角定理(1)圆周角的定义:顶点在圆上,并且两边都与圆相交的角叫做圆周角.注意:圆周角必须满足两个条件:①顶点在圆上.②角的两条边都与圆相交,二者缺一不可.(2)圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.(3)在解圆的有关问题时,常常需要添加辅助线,构成直径所对的圆周角,这种基本技能技巧一定要掌握.(4)注意:①圆周角和圆心角的转化可通过作圆的半径构造等腰三角形.利用等腰三角形的顶点和底角的关系进行转化.②圆周角和圆周角的转化可利用其“桥梁”﹣﹣﹣圆心角转化.③定理成立的条件是“同一条弧所对的”两种角,在运用定理时不要忽略了这个条件,把不同弧所对的圆周角与圆心角错当成同一条弧所对的圆周角和圆心角.五.圆内接四边形的性质(1)圆内接四边形的性质:①圆内接四边形的对角互补.②圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).(2)圆内接四边形的性质是沟通角相等关系的重要依据,在应用此性质时,要注意与圆周角定理结合起来.在应用时要注意是对角,而不是邻角互补.六.相交弦定理(1)相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等.(经过圆内一点引两条线,各弦被这点所分成的两段的积相等).几何语言:若弦AB、CD交于点P,则PA•PB=PC•PD(相交弦定理)(2)推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项.几何语言:若AB是直径,CD垂直AB于点P,则PC2=PA•PB(相交弦定理推论).考点精讲考点精讲一.垂径定理(共4小题)1.(2021秋•上城区期中)如图,⊙O的半径为5,C是弦AB的中点,OC=3,则AB的长是()A.6 B.8 C.10 D.122.(2022•西湖区校级一模)已知,⊙O的直径CD=10,弦AB=8,AB⊥CD,垂足为M,则DM的长为.3.(2021秋•西湖区校级月考)如图,CD为⊙O的直径,CD⊥AB于E,CE=8,DE=2,求AB的长.4.(2021•柯桥区模拟)如图,在⊙O中,过半径OD的中点C作AB⊥OD交⊙O于A、B两点,且AB=2.(1)求OD的长;(2)计算阴影部分的周长.二.垂径定理的应用(共5小题)5.(2022•富阳区二模)往直径为26cm的圆柱形容器内装入一些水以后,截面如图所示.若水面宽AB=24cm,则水的最大深度为()A.4cm B.5cm C.8cm D.10cm6.(2022•诸暨市模拟)有一圆柱形木材,埋在墙壁中,其横截面如图所示,测得木材的半径为15cm,露在墙体外侧的弦长AB=18cm,其中半径OC垂直平分AB,则埋在墙体内的弓形高CD=cm.7.(2020秋•衢州期中)如图,有一座圆弧形拱桥,桥下水面宽度AB为12m,拱高CD为4m.(1)求拱桥的半径;(2)有一艘宽为5m的货船,船舱顶部为长方形,并高出水面3.4m,则此货船是否能顺利通过此圆弧形拱桥,并说明理由.8.(2021秋•余杭区期中)如图,有一座拱桥是圆弧形,它的跨度AB=60米,拱高PD=18米.(1)求圆弧所在的圆的半径r的长;(2)当洪水泛滥到跨度只有30米时,要采取紧急措施,若拱顶离水面只有4米,即PE=4米时,是否要采取紧急措施?9.(2021秋•柯桥区月考)某隧道施工单位准备在双向道路中间全程增加一个宽为1米的隔离带,已知隧道截面是一个半径为4米的半圆形,点O是其圆心,AE是隔离带截面,问一辆高3米,宽1.9米的卡车ABCD能通过这个隧道吗?请说明理由.三.圆心角、弧、弦的关系(共7小题)10.(2021•下城区校级四模)如图,等腰△ABC的顶角∠CAB为50°,以腰AB为直径作半圆,交BC于点D,交AC于点E,则的度数为()A.50° B.25° C.80° D.65°11.(2021秋•瑞安市月考)已知点O,C在直线m的同一侧,作⊙O交m于点A,B.连结AC,BC,OA,OB,若点C在⊙O外,∠AOB=110°,则∠C的角度可能是()A.50° B.55° C.60° D.65°12.(2022•龙湾区模拟)一段长为6π,弧度为60°的弧所在圆的半径长为.13.(2018秋•东阳市期末)点A、C为半径是8的圆周上两动点,点B为的中点,以线段BA、BC为邻边作菱形ABCD,顶点D恰在该圆半径的中点上,则该菱形的边长为.14.(2022•金华模拟)如图,在Rt△ABC中,∠BAC=90°,以点A为圆心,AC长为半径作圆,交BC于点D,交AB于点E,连接DE.(1)若∠ABC=20°,求∠DEA的度数;(2)若AC=3,AB=4,求CD的长.15.(2021秋•开化县校级月考)如图,⊙O的弦AB和弦CD相交于点E,AB=CD,求证:AD=CB.16.(2021秋•长兴县期中)如图,MB,MD是⊙O的两条弦,点A,C分别在,上,且AB=CD,M是的中点.求证:MB=MD.四.圆周角定理(共8小题)17.(2022•鹿城区校级三模)如图,点A,B,C在⊙O上,为优弧,已知=50°,则∠C为()A.25° B.35° C.40° D.50°18.(2022•拱墅区校级开学)已知:如图OA,OB是⊙O的两条半径,且OA⊥OB,点C在⊙O上,则∠ACB的度数为()A.45° B.40° C.35° D.50°19.(2022•嘉兴)如图,在⊙O中,∠BOC=130°,点A在上,则∠BAC的度数为()A.55° B.65° C.75° D.130°20.(2022•萧山区校级二模)如图,在由边长为1的小正方形组成的网格中,一条弧经过格点(网格线的交点)A,B,D,点C为弧BD上一点.若∠CAD=30°.则的长为.21.(2022•鄞州区校级开学)如图所示,在△ABC中,AB=AC,以AB为直径作半圆O,交BC于点D,交AC于点E.若∠BAC=44°,BD=2,则弧AE的度数是,DC的长为.22.(2022•金东区二模)如图,AB是⊙O的直径,点C在⊙O上,=,点D是的中点,连结OC,AD,交于点E,连结BE,BD.(1)求∠EBA的度数.(2)求证:AE=BD.(3)若DE=1,求⊙O的面积.23.(2022•鹿城区校级一模)如图,AB是⊙O的直径,弦CD⊥AB于点E,G是劣弧上一点,AG,DC的延长线交于点F.(1)求证:∠FGC=∠AGD.(2)若G是的中点,CE=CF=2,求GF的长.24.(2021秋•仙居县期末)如图所示,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上,∠BED=30°.(1)求∠AOD的度数;(2)若OA=2,求AB的长.五.圆内接四边形的性质(共6小题)25.(2022•鹿城区二模)如图,点B在上,∠AOC=100°,则∠ABC等于()A.50° B.80° C.100° D.130°26.(2021秋•金东区期末)在圆内接四边形ABCD中,∠D﹣∠B=40°,则∠D的度数为.27.(2022•吴兴区一模)如图,已知四边形ABCD内接于⊙O,∠ABC=68°,则∠ADC的度数是.28.(2022•河南模拟)定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E是△ABC中∠A的遥望角,若∠A=α,请用含α的代数式表示∠E.(2)如图2,四边形ABCD内接于⊙O,=,四边形ABCD的外角平分线DF交⊙O于点F,连接BF并延长交CD的延长线于点E.求证:∠BEC是△ABC中∠BAC的遥望角.29.(2021•杭州模拟)如图,AB是⊙O的直径,圆内接四边形ACDE的边CD与直径AB交于点F,点G在DE延长线上,EA平分∠CEG.(1)求证:AB⊥CD.(2)若AC=CE,AF=9,BF=1,求△ACE的面积.30.(2021•杭州校级模拟)已知,如图△ABC中,AB=AC,D是边BC上一点,BD<DC,过点A、D、C三点的⊙O交AB于点F,点E在上,连接DF、AE、DE、CE.(1)求证:△BDF是等腰三角形;(2)若,请用题意可以推出的结论说明命题:“一组对边相等,且一组对角相等的四边形是平行四边形”是假命题.六.相交弦定理(共2小题)31.(2021秋•东阳市月考)已知四边形ABCD两条对角线相交于点E,AB=AC=AD,AE=3,EC=1,则BE•DE的值为()A.6 B.7 C.12 D.1632.(2021秋•余姚市期中)如图,⊙O的弦AB、CD相交于点P,若AP=6,BP=8,CP=4,则CD长为()A.16 B.24 C.12 D.不能确定巩固巩固提升一、单选题1.(2022·浙江温州·九年级期中)已知:如图,在以点O为圆心的两个圆中,大圆的弦AB和小圆交于点C,D,大圆的半径是13,,,则OC的长是(
)A. B. C. D.82.(2022·浙江金华·九年级期末)如图,点A,B,C,D是⊙O上的四个点,且,OE⊥AB,OF⊥CD,则下列结论错误的是(
)A. B. C. D.3.(2021·浙江·金华海亮外国语学校九年级阶段练习)如图,是的内接三角形,若,则(
)A. B. C. D.4.(2022·浙江金华·九年级期末)在圆柱形油槽内装有一些油,截面如图所示,已知截面⊙O半径为5cm,油面宽AB为6cm,如果再注入一些油后,油面宽变为8cm,则油面AB上升了()cmA.1 B.3 C.3或4 D.1或75.(2022·浙江宁波·三模)已知的直径,是的弦,,垂足为,且,则的长为(
)A. B. C.或 D.或6.(2021·浙江·杭州市天杭实验学校九年级期中)如图,⊙O的半径为5,C是弦AB的中点,OC=3,则AB的长是()A.6 B.8 C.10 D.127.(2021·浙江衢州·九年级期中)如图,在半径为5的中,弦BC,DE所对的圆心角分别是,.若,,则弦BC的弦心距为(
).A. B. C.4 D.38.(2022·浙江湖州·九年级期末)下列说法正确的是(
)A.等弧所对的圆周角相等 B.平分弦的直径垂直于弦C.相等的圆心角所对的弧相等 D.过弦的中点的直线必过圆心9.(2022·浙江宁波·九年级期末)如图,AB是⊙O的直径,CD是弦,,则的度数是(
)A.50° B.45° C.40° D.35°二、填空题10.(2022·浙江·淳安县教育发展研究中心一模)如图,在每个小正方形边长都为1的5×5网格中,有四个点A,B,C,D,以其中任意三点为顶点的三角形的外接圆半径长是______.11.(2020·浙江·九年级期末)已知的半径为,弦,且,则弦和之间的距离为_______.12.(2021·浙江湖州·二模)如图所示一个圆柱体容器内装入一些水,截面AB在圆心O下方,若⊙O的直径为60cm,水面宽AB=48cm,则水的最大深度为_____cm.13.(2021·浙江·九年级期末)如图,已知点是圆上一点,以点为圆心,为半径作弧,交圆于点,则的度数为______度.14.(2021·浙江温州·九年级阶段练习)永嘉瓯北第一中学是一所百年老校,屹立在校门口的雕塑激励历届学子奋发向上.底座圆形图案中,AB是⊙O的直径,且BA=BC,,DC∥AB,AC=米,则该圆形图案的直径AB为_________米.15.(2022·浙江台州·九年级期末)把一个球放入长方体纸盒,球的一部分露出盒外,球与纸盒内壁都刚好相切,其截面如图所示,若露出部分的高度为6cm,AF=DE=3cm,则这个球的半径是_____cm.16.(2022·浙江宁波·九年级期末)如图1,水车又称孔明车,是我国最古老的农业灌溉工具,是珍贵的历史文化遗产.如图2,圆心O在水面上方,且被水面截得的弦AB长为8米,半径为5米,则圆心O到水面AB的距离为_______米.17.(2022·浙江湖州·九年级期末)如图,四边形ABCD是半圆O的内接四边形,其中AB是直径,点C是弧DB的中点,若∠C=110°,则∠ABC的度数=______.18.(2021·浙江·温州外国语学校九年级期中)如图,是半圆的直径,且,在半圆上取一点,使得,则________.19.(2022·浙江温州·九年级期中)如图,在圆的内接△ABC中,,,于点D,则________°.20.(2021·浙江温州·九年级开学考试)如图,扇形OAB中,∠AOB=60°,OA=4+8,点E为弧AB的中点,C为半径OA上一点,将线段CE绕点C逆时针旋转90°得到线段CE′,若点E′恰好落在半径OB上,则OE′=_____.21.(2021·浙江·杭州市建兰中学一模)在⊙O中,AB是直径,AB=2,C是上一点,D、E分别是、的中点,M是弦DE的中点,则CM的取值范围是__________________.22.(2022·浙江温州·九年级期中)如图1,玉带桥拱高而薄,形若玉带,弧形的线条十分流畅.如图2,桥拱关于水面AB反射的影子经过孤所在的圆心O,已知水面宽米,则水面AB与该桥拱的最高点P之间的距离是________米,在离水面AB相同高度的C,D处安装两盛景观灯,若点C是的中点,则点C离水面AB的距离是________米.三、解答题23.(2021·浙江·金华海亮外国语学校九年级阶段练习)如图,在四边形ABCD中,,,AD不平行于BC,过点C作交的外接圆O于点E,连接AE.(1)求证:四边形AECD为平行四边形(2)连接CO,求证:CO平分.24.(2022·浙江绍兴·九年级期末)学习完《垂径定理》这一节内容后,同学们学到了如何用直尺和圆规来平分一条已知弧的方法,老师接下来请小亮同学做如下四等分圆弧问题的操作:小亮的作法如下:如图,(1)连接AB;(2)作AB的垂直平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年学生寝室卫生的管理制度细则
- 速写的课程设计
- 二零二五版电商平台电商平台数据分析与产品优化合同3篇
- 年度特种变压器战略市场规划报告
- 2025年度社区停车位产权转让协议范本4篇
- 2025年度锌锭国际贸易结算服务合同3篇
- 2025年度智能大楼能源管理系统施工合同4篇
- 老虎画画贺卡课程设计
- 二零二五版共享单车运营管理服务合同4篇
- 2025年度个人别墅买卖合同范本8篇
- 《酸碱罐区设计规范》编制说明
- 桥梁监测监控实施方案
- 书籍小兵张嘎课件
- 艺术哲学:美是如何诞生的学习通超星期末考试答案章节答案2024年
- 北京海淀区2025届高三下第一次模拟语文试题含解析
- 量子医学治疗学行业投资机会分析与策略研究报告
- 多重耐药菌病人的管理-(1)课件
- (高清版)TDT 1056-2019 县级国土资源调查生产成本定额
- 环境监测对环境保护的意义
- 2023年数学竞赛AMC8试卷(含答案)
- 2023年十天突破公务员面试
评论
0/150
提交评论