版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
带电粒子在磁场中的运动最小非圆面积的一类题的解法磁聚焦与磁发散θαoθθ结果:θ=α对称性:当带电粒子从同一边界入射、出射时速度与边界夹角相同。结果:θ=α对称性:当带电粒子从同一边界入射、出射时速度与边界夹角相同。θαoθθo2第一类磁发散与磁聚焦v1po1v1v2o3v2v3v3xyOv0例1、在xoy平面内有很多质量为m,电量为e的电子,从坐标原点O不断以相同速率沿不同方向射入第一象限,如图所示.现加一垂直于xOy平面向里、磁感强度为B的匀强磁场,要求这些入射电子穿过磁场都能平行于x轴且沿x轴正向运动,试问符合该条件的磁场的最小面积为多大?(不考虑电子间的相互作用)v0O1O2O3O4O5On所有电子的轨迹圆半径相等,且均过O点。这些轨迹圆的圆心都在以O为圆心,半径为r的且位于第Ⅳ象限的四分之一圆周上,如图所示。
电子由O点射入第Ⅰ象限做匀速圆周运动1解1:xyOv0O1O2O3O4O5On即所有出射点均在以坐标(0,r)为圆心的圆弧abO上,显然,磁场分布的最小面积应是实线1和圆弧abO所围的面积,由几何关系得由图可知,a、b、c、d等点就是各电子离开磁场的出射点,在一个圆上,均应满足方程x2+(r-y)2=r2。abcd1解2:设P(x,y)为磁场下边界上的一点,经过该点的电子初速度与x轴夹角为
,则由图可知:x=rsin
,
y=r-rcos
,得:x2+(y-r)2=r2。所以磁场区域的下边界也是半径为r,圆心为(0,r)的圆弧应是磁场区域的下边界。磁场上边界如图线1所示。xyOv01θP(x,y)Orr两边界之间图形的面积即为所求。图中的阴影区域面积,即为磁场区域面积:例2、(2009·海南·T16)如图,ABCD是边长为a的正方形。质量为m电荷量为e的电子以大小为v0的初速度沿纸面垂直于BC边射入正方形区域。在正方形内适当区域中有匀强磁场,电子从BC边上的任意点入射,都只能从A点射出磁场。不计重力,求:(1)此匀强磁场区域中磁感应强度的大小和方向;(2)此匀强磁场区域的最小面积。ABCDxyOv02解:(1)设匀强磁场的磁感应强度的大小为B。令圆弧AEC是自C点垂直于BC入射的电子在磁场中的运行轨道。依题意,圆心在A、C连线的中垂线上,故B点即为圆心,圆半径为a,按照牛顿定律有ev0B=mv02/a,得B=mv0/ea。ABCDEFpqOθ(2)自BC边上其他点入射的电子运动轨道只能在BAEC区域中。因而,圆弧AEC是所求的最小磁场区域的一个边界。(3)设某射中A点的电子速度方向与BA的延长线夹角为θ的情形。该电子的运动轨迹qpA如图所示。图中圆弧Ap的圆心为O,pq垂直于BC边,圆弧Ap的半径仍为a,在D为原点、DC为x轴、DA为y轴的坐标系中,p点的坐标为(x,y),则
x=asinθ,y=-acosθ。因此,所求的最小匀强磁场区域,是分别以B和D为圆心、a为半径的两个四分之一圆周AEC和AFC所围成的区域,其面积为S=2(πa2/4-a2/2)=(π-2)a2/2由④⑤式可得:x2+y2=a2,这意味着在范围0≤θ≤π/2内,p点处在以D为圆心、a为半径的四分之一圆周AFC上,它是电子做直线运动和圆周运动的分界线,构成所求磁场区域的另一边界。圆形磁场的两个特殊规律:磁聚焦和磁发散现象条件:当磁场圆半径与轨迹圆半径相等时
磁聚焦:从磁场边界上以相同速度平行入射的相同粒子,又会聚焦于磁场边界上的同一点。
磁发散:反之,从磁场边界上某点向四周发射速率相同的粒子,其出射方向都平行于入射点的切线方向.平行会聚于一点一点发散成平行磁发散原理图解条件:圆形磁场区域半径与粒子轨道半径一样O1O2AB演示演示磁聚焦原理演示演示条件:圆形磁场区域半径与粒子轨道半径一样大。现象:从圆心打出的任意方向的粒子飞出方向与入射点切线平行。拓展:可逆性磁聚焦原理例3、(2009年浙江卷)如图,在xOy平面内与y轴平行的匀强电场,在半径为R的圆内还有与xOy平面垂直的匀强磁场。在圆的左边放置一带电微粒发射装置,它沿x轴正方向发射出一束具有相同质量m、电荷量q(q>0)和初速度v的带电微粒。发射时,这束带电微粒分布在0<y<2R的区间内。已知重力加速度大小为g。(1)从A点射出的带电微粒平行于x轴从C点进入有磁场区域,并从坐标原点O沿y轴负方向离开,求电场强度和磁感应强度的大小与方向。(2)请指出这束带电微粒与x轴相交的区域,并说明理由。(3)在这束带电磁微粒初速度变为2v,那么它们与x轴相交的区域又在哪里?并说明理由。xyRO/Ov带点微粒发射装置CxyRO/Ov带点微粒发射装置CPQr图(c)xyRO/OvCAxyRO/vQPORθ图(a)图(b)3【答案】(1);方向垂直于纸面向外(2)见解析(3)与x同相交的区域范围是x>0.【解析】略【关键】图示例4、如图,在xOy平面内,有以O′(R,0)为圆心,R为半径的圆形磁场区域,磁感应强度大小为B,方向垂直xOy平面向外,在y=R上方有范围足够大的匀强电场,方向水平向右,电场强度大小为E。在坐标原点O处有一放射源,可以在xOy平面内向y轴右侧(x>0)发射出速率相同的电子,已知电子在该磁场中的偏转半径也为R,电子电量为e,质量为m。不计重力及阻力的作用。(1)求电子射入磁场时的速度大小;(2)速度方向沿x轴正方向射入磁场的电子,求它到达y轴所需要的时间;(3)求电子能够射到y轴上的范围。xyOEO′RxyOEO′R例5、如图所示,在xOy平面上-H<y<H的范围内有一片稀疏的电子,从x轴的负半轴的远外以相同的速率v0沿x
轴正向平行地向y轴射来,试设计一个磁场区域,使得:(1)所有电子都能在磁场力作用下通过原点O;(2)这一片电子最后扩展到-2H<y<2H范围内,继续沿x轴正向平行地以相同的速率v0向远处射出。已知电子的电量为e,质量为m,不考虑电子间的相互作用。xOv0yH2H-2H-Hv0v0v0xOv0yH2H-2H-Hv0v0v0对称思想xOv0yH2H-2H-Hv0v0v0对称思想例6、(2008·重庆高考)如图为一种质谱仪工作原理示意图。在以O为圆心,OH为对称轴,夹角为2α的扇形区域内分布着方向垂直于纸面的匀强磁场。对称于OH轴的C和D分别是离子发射点和收集点。CM垂直磁场左边界于M,且OM=d。现有一正离子束以小发散角(纸面内)从C射出,这些离子在CM方向上的分速度均为v0。若该离子束中比荷为q/m的离子都能会聚到D,试求:(1)磁感应强度的大小和方向(提示:可考虑沿CM方向运动的离子为研究对象);(2)离子沿与CM成θ角的直线
CN进入磁场,其轨道半径和在磁场中的运动时间;(3)线段CM的长度。解:
6(1)如图所示,设沿CM方向运动的离子在磁场中做圆周运动的轨道半径为R,由R=d
,qv0B=mv02/R可得B=mv0/qd,磁场方向垂直纸面向外。(2)设沿CN运动的离子速度大小为v,在磁场中的轨道半径为R′,运动时间为t由vcosθ=v0,得v=v0/cosθ。R′=mv/qB=d/cosθ。设弧长为s,t=s/v,s=2(θ+α)R′离子在磁场中做匀速圆周运动的周期T=2π
m/Bq,得:t=例7、如图,在直角坐标系xOy中,点M(0,1)处不断向+y方向发射出大量质量为m、带电量为–q的粒子,粒子的初速度大小广泛分布于零到v0之间。已知这些粒子此后所经磁场的磁感应强度大小为B,方向垂直于纸面向里,所有粒子都沿+x方向经过b区域,都沿-y的方向通过点N(3,0)。(1)通过计算,求出符合要求的磁场范围的最小面积;(2)若其中速度为k1v0
和k2v0
的两个粒子同时到达N点(1>k1>k2>0),求二者发射的时间差。MOab
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 系统容错设计思路
- 世界名曲解读课程
- 求职简历制作指导模板
- 二零二五版房产抵押购销与房地产项目运营管理合同3篇
- 二零二五年度旅游产品居间服务合同2篇
- 二零二五年度生物降解材料研发合作协议3篇
- 二零二五版兼职研发人员技术成果保密合同3篇
- 雅安职业技术学院《Python语言》2023-2024学年第一学期期末试卷
- 二零二五版公司向个人提供艺术品购买借款合同3篇
- 二零二五年度房地产法律法规咨询居间服务合同6篇
- 云管理平台运营面试题
- “简约与繁复”二元思辨【 审题立意+范文精评 】 语文高分写作 多元思辨
- 计算物理课件
- 初级养老护理员培训全套
- 集中供热管网系统一次网的调节方法
- MRP、MPS计划文档教材
- 甲状腺疾病护理查房课件
- 安全安全带检查记录表
- 2022年浙江省绍兴市中考数学试题及参考答案
- Listen-to-this-3-英语高级听力-(整理版)
- 生活垃圾焚烧处理建设项目评价导则(2022)
评论
0/150
提交评论