版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高中数学新大纲新教材
全日制普通高级中学数学教学大纲(试验修订版)修订说明
《全日制普通高级中学数学教学大纲(试验修订版)》是在原国家
教委1996年颁发的《全日制普通高级中学数学教学大纲(供试验用)》
的基础上修订的。自1996年6月至2000年1月教育部基础教育司先后召
开四次大纲修订工作会议,邀请部分专家在认真调查研究,广泛听取
意见的基础上进行了修订。此次修订大纲是为了进一步贯彻落实第三
次全国教育工作会议的精神,加快高中课程改革的步伐,按照《全日
制普通高级中学课程计划(试验修订稿)》的要求而修订的。
修订的指导思想是“理念要新,操作要稳〃。理念要新主要是指要
体现三个面向和全教会议的精神,要体现时代特色,要体现高中课程
改革的发展趋势。操作要稳是指在原来《数学教学大纲(供试验用)》
总体结构不作大的改动的基础上修订,既要体现改革精神,又不能搞
大起大落。在修订过程中认真地研究了天津、山西、江西两省一市自
1997年秋试验以来的反馈意见,充分地听取了方方面面专家和学者的
改革建议,同时考虑到已编出的教材不宜作大的变动。
这次修订的重点是加强对学生创新能力和实践能力的培养,同时
对教学内容作了部分删减、调整和降低要求。现就修订情况简要说明
如下:
(-)落实实践能力和创新意识的培养
1.加强实践能力的培养。本次修订将〃解决实际问题的能力〃作
为教学目的之一纳入大纲。它是以思维能力、运算能力、空间想象能
力等三个基本能力作为前提和基础,要求”会提出、分析和解决带有
实际意义或在相关学科、生产和生活中的数学问题;会用数学的语言
表达问题,进行交流。〃
为了加强解决实际问题的能力的培养,本大纲将实习作业从原有
的三个增加到四个,并且在教学目标中,提出对各个实习作业的教学
要求。在教学中,强调要培养用数学的意识,即一方面应使学生通过
背景材料,进行观察、比较、分析、综合、抽象和推理,得出数学概
念和规律;另一方面使学生能够运用所学知识,将实际问题抽象成数
学问题,建立数学模型,并加以解决。要引导学生接触自然,了解社
会,鼓励学生参加形式多样的实践活动。
2.加强创新意识的培养。本大纲将〃形成创新意识〃写进了教学
目的,放在四个能力之后,对创新意识的培养是贯穿于知识教学、能
力培养的全过程中,同时又是逐渐形成的,不宜要求过高、操之过急。
创新意识主要是指:对自然界和社会中的数学现象具有好奇心,有追
求新知识的欲望,能够独立思考,会从数学的角度发现和提出问题,
并加以探索和研究。
为了加强创新意识的培养,本大纲增设了〃研究性课题”,要求每
个学期至少安排一个研究性课题,平均每个课题安排3个课时的教学
时间。研究性课题主要是指对某些数学问题的深入探讨,或者从数学
的角度对某些日常生活中和其他学科中出现的问题进行研究,在研究
过程中要以学生的自主性、探索性学习为基础,倡导从学生生活实际、
生产实际自拟研究性课题。在研究性学习中,教师是组织者、参与者
和指导者,注意培养学生的科学精神和科学态度。
在教学中要激发学生学习数学的好奇心、求知欲,要启发学生能
够发现问题和提出问题,善于独立思考和钻研问题,鼓励学生创造性
地解决问题。
3.树立以学生发展为本的教育观念。教学中要改革教学方法和
教学手段,通过介绍数学史实,开展数学活动和日常教学,激发学生
学习数学的兴趣,培养学生发现、提出、分析和解决问题的能力和创
新意识,在测试和评估中要注意评估学生创新意识和能力的发展情
况。
(-)对教学内容和教学要求作了修改
1.删去了较为陈旧的或学生学习困难较大的内容。
必修课部分删去了如下内容:
命题、数学归纳法与数学归纳法应用举例(移到选修n中)、直
线方程的参数式、曲线的交点、利用平移化简圆锥曲线方程。
选修I中(即原大纲限定选修课供文科、实科选用部分)删去了
〃瞬时速度”以及复数单元的全部内容。
选修II中(即原大纲限定选修课供理科选用部分)删去了如下
内容:
连续型随机变量的概率密度、两个重要的极限、导数的定义、二
阶导数、二阶导数的物理意义、直接积分法、第一类变量代换法、极
坐标、极坐标系中的平面图形的面积。
2.调整了部分教学内容,适当降低学习难度,重视了数学文化
价值的教学。
如极限中只讲描述性的定义,删去了〃数列极限中了解的定义〃,
并将“数列极限的四则运算〃与〃函数极限的四则运算“合并成"极限的
四则运算〃,只要求利用法则会求某些极限;将〃随机变量的期望值和
方差〃改为〃离散型随机变量的期望值和方差〃,将〃用样本方差估计总
体方差、用频率分布估计总体分布、累积频率分布〃等改换为〃总体的
估计、正态分布、线性回归”,既减轻了学习难度,又突出了重点,
也加强了应用;在微积分中增加了〃微积分学建立的时代背景和历史
意义”,以引起学生对数学文化价值的重视。
3.适当降低了教学要求。
如〃直线、平面、简单儿何体〃这一部分,经修改后教学要求大大
降低,有7处〃掌握〃级要求降为“了解”级要求,特别是论证方面,删
去了〃利用有关概念进行论证和解决有关的问题〃的要求;将“三垂线
定理及其逆定理〃由〃掌握〃级降为〃了解”级要求,淡化了儿何论证的
要求。又如〃四种命题、函数的奇偶性和单调性的概念〃的教学要求都
有所降低,对椭圆、双曲线、抛物线的〃儿何性质〃都改为〃简单儿何
性质〃,教学要求也作了相应的处理。
4.教学时间更具有弹性。
时间变更如下表
课程计划安排课时原大纲安排课时修订后安排课时研究性课题
安排课时机动课时
必修课2802522421028
选修I524232317
选修II1048472626
上述安排,使研究性课题的教学时间得到了保证。必修课有10%
教学机动时间,由教师灵活掌握安排。高中三年级选修I教学内容为
32课时,按每周2课时安排,16周结束课程,再安排3课时〃研究性课
题〃教学,那么还有17课时(即8周半)作为教学机动时间;选修II
教学内容为72课时;按每周4课时安排,18周结束课程,再安排6课时
〃研究性课题”教学,那么还有26课时(即6周半)作为教学机动时间;
《课程计划(试验修订稿)》规定〃高中三年级复习考试12周〃,连同
上述教学机动时间,还是有充裕的时间,将高中阶段所学的教学内容,
进行归纳、整理,作系统地复习的。
新高中教材《数学》(试验修订本)介绍
这套供试验用的普通高级中学教科书《数学》,是根据原国家教
委1996年颁发的《全日制普通高级中学课程计划(试验)》(它在1999
年进行了修订,以下简称《课程计划》)和《全日制普通高级中学数
学教学大纲(供试验用)》(它在1999年11月进行了修订,以下简称《新
大纲》)编写的。全套书共三册。其中第一册和第二册是必修课本,
分别供高中一年级和高中二年级必修课使用;第三册是选修课本,它
分为两个分册,供高中三年级选修课使用,分别相当于《新大纲》中
的〃选修课•水平I〃和〃选修课・水平II”。自1997年秋季开始逐年供
书,1999年秋季供齐。与这套教科书相配套的教师教学用书也同步供
书。从2000年初起,这套教材将根据修订后的大纲进行修订。现将教
材修订本的情况介绍如下:
(-)编写的指导思想
新编高中数学教材遵循〃教育要面向现代化、面向世界、面向未
来〃的战略思想,全面贯彻党和国家的教育方针,按照高中《课程计
划》中提出的〃贯彻教育必须为社会主义现代化建议服务,必须与生
产劳动相结合,培养德、智、体、美等方面全面发展的社会主义事业
的建设者和接班人的方针,以全面推进素质教育为宗旨,全面提高普
通高中教育质量〃,处理好社会需要、学科发展,以及高中学生的学
习特点与认识规律等关系,既要有统一的基本要求,又要能适应不同
学生需要,为培养社会主义现代化建设需要的各级各类人才打好基
础,使全体学生在高中阶段受到良好的数学教育,全面提高学生素质。
为此,我们在新教材的编写中着重注意了以下几点。
1.认真贯彻落实《课程计划》和《新大纲》的精神,新教材要
面向大多数学校和学生,着眼于全面提高学生的素质
面向全体学生就是要对每一个学生负责,既要为所有的学生打好
共同的基础,也要注意发展学生的个性和特长,因材施教。教材内容
的选择要有利于提高学生的文化科学素养,有利于学好最必要的基础
知识,有利于能力的培养。教材的份量和要求要面向大多数学校和学
生,处理好需要与可能、提高质量与减轻负担的关系,要从素质教育
的目标出发,确定和编排好教材内容。
2.新教材要积极稳妥地推进数学课程的改革
我国中学的数学教材历来有编排上重视学科的科学性和系统性,
文字上重视表达严谨、准确等优点,比较重视基础知识的讲授和基本
技能的训练,近年来又比较重视对学生能力的培养。这些都是需要继
承和发扬的。但是也应看到,我国的数学教材仍存在着诸如内容陈旧、
知识面窄、结构单一、应用重视不够等缺点。对于这些缺点,在编写
新教材时应当认真研究和改进。然而,教材改革是长期艰巨的任务,
我们要采取积极的态度推进改革,同时又要步伐稳妥,改革要考虑到
面向21世纪的社会需要,又要考虑到我国的教学实际。
3.新教材要促进学生积极主动地学习,在推动教育思想的转变
和教学方法的改革上下工夫
我们以往编写的数学教材,对学生学习的规律研究得不够,缺少
启发性和趣味性,不便于学习阅读。有的学生只把数学教科书当作习
题书,或查找公式用,这种情况必须改变。新教材注意调动学生学习
的积极性和主动性,研究学生的思维特点和学习规律,把学生作为学
习的主体来编排内容。教材在内容的呈现上要注意联系实际,注意展
示知识形成的过程,使学生在获取知识和运用知识的过程中,发展思
维能力,提高思维品质,加深对所学知识的理解。
(二)新教材的主要特点
1.精简、更新教材内容,改革传统的教学方法
《新大纲》在保证基础知识教学、基本技能训练、基本能力培养
的前提下,删减了传统的初等数学中次要的、用处不大的,而且对学
生接受起来有一定困难的内容。与此同时一,增加了一些为了进一步学
习打基础的,有着广泛应用的,而且又是学生能够接受的新知识。这
次删减的内容主要有代数中的幕函数、指数方程、对数方程、一些三
角恒等变形的公式、反三角函数、三角方程,立体儿何中的棱台、圆
台等。增加的内容主要有简易逻辑、平面向量、空间向量、概率统计、
微积分初步知识等。
新编数学教科书是严格按照《新大纲》中这些精简、更新的规定
编写的。例如原来高中数学教材中三角函数及其相关的内容共有三
章,即〃三角函数〃〃两角和与差的三角函数“反三角函数和简单三角
方程〃,合并为〃三角函数〃一章,由原来的72课时压缩为36课时(不
包括正弦定理、余弦定理和解斜三角形举例)。因此,新编的〃三角函
数”一章中,从内容到讲法,以及部分定理的证明,繁难的恒等变形、
偏怪的例习题等,都大大地进行了删减。这样处理,一方面是为了保
证三角函数的主要内容能够掌握好,同时也是为了更新知识,使得更
有用的新内容能够进入中学数学课程里。
新编数学教科书更新了传统内容的讲法和部分数学语言。例如,
比较广泛地使用集合语言、逻辑联结词、国家标准计量符号。使用向
量处理某些传统内容,利用向量证明余弦定理等,既简捷又容易接受。
按照《新大纲》的9(B)方案,新教材中利用空间向量讲性质定理,
某些直线与平面、平面与平面的位置关系问题,颇具特色,从而使教
材具有新意。
新编数学教科书还注意引导教师更新教学手段。由于科学计算器
已列为初中首选的计算工具,这就为高中用科学计算器处理复杂计算
问题作好了过渡。新编教科书从计算指数嘉开始,就比较广泛地要求
使用科学计算器。另外,有条件的学校可以利用计算机和多媒体技术
作为数学的辅助教学手段。例如,用计算机和多媒体技术演示儿何图
形运动变化规律,三角函数曲线周期变化规律等,既直观明了,又能
反映变化的过程,对深刻理解数学基础知识都十分有好处。
2.重视处理好统一性和灵活性的关系,使新教材具有层次性
《新大纲》规定以必修课为主,实行必修课、选修课相结合的课
程结构模式,为处理教材的灵活性提供了依据。新的高中数学教材为
了处理好必修课与选修课的关系,既要注意培养全体高中生数学素养
的需要,也要注意不同爱好和特长的特殊需要,既要注意必修课知识
体系的完整,也要考虑到必修课时有限、学生的接受能力不尽相同,
知识处理上不宜要求过高,不必过分追求体系完整、深化。选修课是
在共同的必修课基础上,针对学生不同需要、不同去向而分出的不同
层次的课程,要注意与必修课的衔接和配合,又要有所区别。例如在
必修课中,函数对所有学生来说内容相同,要求也没有差别,而在选
修课中,水平I与水平n对函数的应用函数变化率的内容和要求就大
不相同。水平H侧重讲微积分的基本概念、基本方法和初步应用,而
水平I则侧重基本思想和简单应用。又如在必修课中概率初步知识是
共同的基础,在选修课中,水平n在原有概率知识的基础上,要拓宽
到离散型随机变量的分布列、期望值、方差,而水平I只学习侧重应
用的统计初步知识包括抽样方法,总体分布的估计,正态分布,总体
特征数的估计和线性回归等。这些知识相对就业或升学也是打基础,
在理论要求上,在联系实际的选材上也要有一定的限度,在内容安排
上不宜过满,注意留有余地,供教师教学上能灵活处理,供学生学习
时自由选择。
在教材的编写上增加了灵活性,以适应不同层次学生的不同需
要,每章均安排了一至两个阅读材料,供学生课外阅读。内容涉及知
识的延伸拓宽、知识的应用、数学发展的一些故事等。习题里有带*
号的题目,作为基本要求的拓宽,供学生选用;复习参考题安排A、
B两种题目,A组题是复习巩固本章使用,B组题是供学有余力的学
生选用;小结与复习中安排有供教师教学选用的参考例题及学习要求
等。
为了增加灵活性,高一、高二只安排了约占总授课时间90%的教
学内容,高三水平I、II分别安排不超过总授课时间(不包括复习考
试)40%、75%的教学内容,教师可以利用剩余教学时间作为机动,灵
活安排。
3.把多项数学内容综合编写为一门数学,有利于沟通知识的内
在联系
依据《新大纲》规定,将精选出来的代数、儿何的基础知识和概
率统计、微积分的初步知识综合为一门数学课,不再分代数、立体儿
何、平面解析儿何和微积分初步等儿门开设。
综合为一门数学课有如下三方面好处:一是有利于精简教学内
容,减少不必要的重复;二是有利于加强各部分知识间的相互联系;
三是有利于数学思想方法的相互渗透。
4.强调理论联系实际,注意培养用数学的意识
重视数学知识的应用,是近年来数学教改的一个热点,也是《新
大纲》强调的重点之一,新编教材在加强用数学的意识方面也作了改
进。理论联系实际是编写教材的重要原则之一。而联系实际的目的就
是为了更好地掌握基础知识,增加用数学的意识,培养分析问题和解
决问题的能力。新编教材把培养学生用数学的意识贯穿在教材编写的
始终,教材的正文一般都注意从实际引入概念,从实际提出问题,例
题,习题中多增加一些联系实际的内容。例如数列中联系经济生活中
的储蓄,函数中联系增长率的变化,直线和圆的方程中增加线性规划
初步知识,圆锥曲线中联系行星、卫星运行轨道等等。概率本身就是
与实际问题联系非常密切的内容。在各章的章头图或阅读材料中,也
注意提供有实际背景的问题。教材中还注意把数学知识应用到相关学
科和生活、生产实际中去,引导学生在解决实际问题过程中提高分析
问题和解决问题的能力。新编教材还注意使用数学语言表达问题,进
行交流,形成用数学的意识。例如,讲线面关系时一,注意用语言符号、
图形来表达问题等。
按照《新大纲》,新教材增加了四个〃实习作业〃,目的是应用所
学数学知识,提高解决实际问题的能力,使学生在参与数学活动过程
中受到训练和提高。此外,还增设了"探究性课题”,要求每学期至少
安排一个课题进行研究,平均每个课题给3课时教学时间。
5.结合数学教材内容,加强思想品德教育
《新大纲》明确提出,结合数学教学内容和学生的实际对学生进
行思想品德教育,是数学教学的一项重要任务。其中主要包含用辩证
唯物主义的观点阐述教学内容,从而使学生受到唯物主义观点的教
育;通过介绍我国古今的数学成就和数学在社会主义建设中的作用,
使学生逐步明确要为国家富强、人民富裕而努力学习;结合教学和严
格要求,培养学生良好的个性品质(包括学习目的、学习兴趣、学习
毅力、学习信心、科学态度、探索创新的精神等)。
新编教材十分重视落实《新大纲》的精神,结合教材内容加强思
想品质方面的教育。例如,结合函数概念的教学,突出实践理论实践
等观点;结合直线、圆锥曲线方程的内容,突出运动变化,相互转化
等观点;很多内容注意反映社会主义市场经济和我国社会主义建设的
伟大成就,从而激发学生的民簇自豪感和爱国主义思想。
6.重视教材的整体性,注意与初中数学的衔接和与相关学科的
配合
首先要考虑数学内容各部分知识的逻辑性和系统性,由浅入深,
由易到难,由简单到复杂,按照逻辑系统和认知理论相结合的思想安
排教材体系,整套书是这样,各章各节也是这样。
其次要考虑与相关学科学习的配合,横向方面要与物理、化学、
计算机等学科配合。物理、化学可以为数学学习提供背景、模型、数
据等,而数学又可作为有关学科的学习工具,为其他学科学习提供准
备。科学计算器已列入初中教学内容,有少数学校也将计算机课作为
高中的选修课,在安排上要充分考虑与科学计算器的使用、计算机的
学习内容相配合。
高中教育作为基础教育的一个阶段,既是义务教育后的继续教
育,又是与高等学校或社会生产生活实际相连接的结合处。所以还要
考虑各个学段的相互衔接,在纵向既要搞好与义务教育初中数学教学
大纲相衔接,又要考虑与大学继续学习相衔接。
(三)教学内容和安排
1.必修课教学内容
数学必修课的教学内容共11项,其中第9项又分(A)、(B)两种
方案,分别在高一、高二学习,每周4课时,除了复习考试时间外,
总授课时数为280课时。
数学必修课的11项内容主要是代数、几何(包括立体几何和平面
解析几何)和概率初步知识三部分,考虑到学科知识的系统性和学生
的认知水平,将这三部分内容大致按照代数、几何和概率初步的顺序
相对集中安排。集合与简易逻辑作为中学数学的基础和数学语言,安
排在全套教材的首章。接下来第一部分是代数的内容,包括函数、数
列、三角函数三章。因为数列可以看成以正整数为自变量的函数的值
的排列,与函数关系密切,内容又比较简单,所以将数列由原来在高
中二年级学习提前到高中一年级。第二部分是几何的内容,包括直线
和圆的方程,圆锥曲线方程,直线、平面和简单几何体三章,因为立
体几何较平面解析几何难学,近年来反映立体几何教学效果不好,学
生反映立体几何难学,所以本着先易后难,先平面后空间的顺序,先
学习平面解析儿何的两项内容,然后再学习空间图形部分。平面向量
是属于几何的内容,它是连接代数与儿何的结合点,为了便于应用,
将这一项安排在代数与儿何中间。第三部分为概率的内容,包括排列
与组合、概率。排列、组合及二项式定理的内容可以作为概率的预备
知识,与概率合并为一章。这样一方面可以控制和适当降低排列、组
合内容的难度,同时又能更好地结合概率内容的学习。不等式包括不
等式的概念、基本性质以及不等式的证明和解法,因为义务教育初中
数学没有学习一元二次不等式的解法,这样将不等式中的一元二次不
等式移到集合之后学习,一方面学完集合可直接用来巩固集合的表示
方法,另一方面又可作为求函数定义域等内容的预备知识。而不等式
的性质和证明的内容,抽象思维和逻辑推理要求较高,是初等数学的
难点,因此安排在数学第二册开始,作为高二学习内容。数学必修课
本编成两册,共10章,每册5章,目录及课时安排如下:
数学第一册(供一年级使用)
1.集合与简易逻辑(约22课时)
2.函数(约30课时)
3.数列(约12课时)
4.三角函数(约36课时)
5.平面向量(约22课时)
数学第二册(供二年级使用)
6.不等式(约16课时)
7.直线和圆的方程(约22课时)
8.圆锥曲线(约18课时)
9.直线、平面和简单儿何体(约36课时)
10.排列、组合与概率(约30课时)
2.选修课教学内容
数学选修内容,实际上是两部分:概率统计、微积分。复数是我
国高中数学传统的教学内容,《新大纲》把它安排在选修课里,主要
便于将两种水平区别开来,特别是在三角函数中反三角函数已经删减
的情况下,复数就不能作统一要求,否则对选学水平n的学生的要求
就有些偏低。所以复数内容只安排给选学水平n的学生学习。概率统
计、微积分初步知识是原来教材中的任选内容,增加到选修课里,一
方面更新了内容、扩大了基础,有效地改变了我国中学数学课的“内
容陈旧、知识面窄〃的现状;另一方面也部分地解决了〃一刀切〃的课
程结构,能够使不同需要和不同水平的学生学习到不同的数学课程。
数学选修课本编成两个分册,目录及其课时安排如下:
数学第三册(水平H)
1.概率与统计(约14课时)
2.极限(约12课时)
3.导数与微分(约16课时)
4.积分(约14课时)
5.复数(约16课时)
数学第三册(水平1)
1.统计(约12课时)
2.极限与导数(约20课时)
(四)教材与教学
新高中数学教材是根据《课程计划》、《新大纲》的精神,吸收了
国内外教材改革的成果,继承了传统教材的优点而编写成的新教科
书,虽然做得还很不够,但是编者尽量按这一指导思想进行。为此,
对使用教科书进行教学提出如下几点建议:
1.转变观念,提高对素质教育的认识
所谓转变观念,就是要由〃应试教育〃转向全面提高国民素质的轨
道,要面向全体学生,促进全面发展,注意培养创新精神和实践能力。
当前中学数学教学也确实受到〃应试教育〃的影响,如存在着任意
拔高教学要求,加宽知识内容,加大习题难度,提前结束课程等不良
做法。这些都是不符合改革精神,学生负担过重的现状也不能得到改
善和缓解。新编高中数学教材虽然精简、更新了部分内容,有些要求
和习题难度也确有明显的降低,但如果不认真贯彻《新大纲》的改革
精神,教学上可能还会出现使用新课本,但按过去的要求进行教学的
现象,这势必不利于减轻学生过重的负担。因此,在使用新教科书时
一定要改进教学方法,按《新大纲》的要求进行,控制教学要求,控
制教学难度,确实从“应试教育〃转变到贯彻素质教育的轨道上来。
2.要充分利用先进的教学手段,提高教学效益
新的教学手段必然促进教学方法的改革,必然带来新的教学效
益。科学计算器已被列入初中的教学内容,高中相应的计算内容已充
分使用科学计算器讲授,教师在教学中更应充分利用科学计算器,以
提高教学效益,提高学生解决问题的能力。有条件的地方或学校,也
要利用电子计算机和多媒体技术作为教学的辅助手段。
3.要重视应用的教学
重视应用,培养学生用数学的意识,是《新大纲》和新教材的一
个特点。教材的选材中已经注意时代性、应用性。但是各地情况不相
同,使用教材时要结合当地的实际,结合学生的实际。如实习作业内
容的选择,应该结合本校的实际条件来组织,其目的主要是让学生参
与教学活动,培养他们分析问题和解决问题的能力。
4.要重视研究性课题
研究性课题主要是指对某些数学问题的深入探讨,或者从数学角
度对某些日常生活中和其他学科中出现的问题进行研究。要充分体现
学生的自主活动和合作活动。研究性课题应以所学的数学知识为基
础,并且密切结合生活和生产实际。新教材将按《新大纲》的要求编
入以下课题,当然教学时也可以由师生自拟课题。要提倡教师和学生
自已提出问题。
课题:数列在分期付款中的应用,向量在物理中的应用,线性规
划的实际应用,多面体欧拉定理的发现(以上必修);杨辉三角,定
积分在经济生活中的应用(以上选修)。
教学目标是:(1)学会提出问题和明确探究方向;
(2)体验数学活动的过程;
(3)培养创新精神和应用能力;
(4)以研究报告或小论文等形式反映研究成果,学
会交流。
三.高中教材《数学(试验修订本•必修)》第一册(上)简介
《高中数学》第一朋・(上)与《九年义务教育全日制初级中学数
学教学大纲(试用修订版)》所规定的教学内容直接衔接,供高中一
年级的第一学期使用。这册书包括三章内容,约15万字,共需65课时。
具体安排为
第一章集合与简易逻辑.............20课时
第二章函数........................30课时
第三章数列..................5课时(含研究性课题3课时)
高中一年级开设数学课(必修课)每周4课时,这册书的教学内
容约需16—17周完成。从1997年9月开始,这册书的试验本在天津、
山西、江西进行试验。根据《大纲》,结合试验反馈信息,1999年—2000
年对该书的试验本进行了修订,形成试验修订本。
A.教材编写特点
本书的编写特点主要有以下几点:
(-)承上启下,注重基础
本册书是初中数学教材的直接后继教材。因此,本册书的编写特
别重视与初中数学教学的衔接。例如,在第一章中讲集合和简易逻辑
时,所用的例子大多是学生在初中学过的内容,这便于学生在原有知
识基础上,通过已知的具体例子来理解新知识。第一章中有关不等式
的内容,是初中所学相关内容的继续,也是后面函数内容的预备知识。
这种初、高中内容相结合的安排,符合螺旋式上升和由具体到抽象的
认识规律。此外,初中数学的教学内容较具体,模仿性的练习较多,
比较强调基本技能训练;高中数学的内容抽象性较强,比较强调对基
本概念的理解基础上的再创造式的运用,对思维能力、运算能力、空
间想象能力等的要求较高。学生对于高中数学的学习方法也需要一个
适应过程,因此做好初、高中数学教学的过渡衔接不仅要考虑知识方
面,而且要考虑如何调动学生积极思维,使他们尽快适应高中的学习
内容和方法。为此,本册书在编写时注意了在如何逐步提高学生分析
和解决问题的能力上下功夫,在叙述方式和例、习题的选编设计方面,
力求符合学生的认知规律。
本册书在全套教科书中具有基础地位。这主要表现在下面儿方
面:
1.本册书的主要内容是整个高中数学教材体系的基础。例如,
本册书的第一章〃集合与简易逻辑〃在整套教科书中的作用是至关重
要的。集合是最基础的概念,数学中许多其他内容都与之相关,儿何
图形是点的集合,函数是数的集合间的映射,概率统计要涉及随机试
验下可能出现结果的集合……简易逻辑中的四种命题的关系和充要
条件,在数学各部分内容的讨论中随处可见。又如,本册书的第二章
为〃函数〃,函数可以将中学数学中的解析式、方程、不等式等诸多内
容统一起来,组合数学和概率统计中函数的例子不胜枚举,微积分专
门讨论函数变化率……因此,学好本册书会为整个高中数学学习打下
良好的基础。
2.本册书的某些数学思想方法是高中数学中的重要思想方法。
例如,利用化归思想将实际问题抽象为数学模型,从特殊对象归结出
一般规律,分类讨论的方法,数形结合的方法等,不仅在本册书中,
而且在后面其他各册书中都是常用重要思想方法。
3.本册书所用的关于集合等内容的符号表示法,是整个高中数
学各部分内容都要使用的基本数学符号语言。新增的简易逻辑是学习
概念、判断、推理必须遵循的基本规则。
对于本册书特殊的基础地位,编写时给予了充分重视。搞好基础
知识的教学、基本技能的训练和能力的培养,是用好本册书的关键。
(-)联系实际,强调应用
本册书的编写,力求贯彻理论联系实际的原则,尽量从实际问题
出发,结合实际例子讲述抽象内容,介绍数学知识的实际应用。例如,
第二章中专门安排了〃2.9函数的应用举例〃一节,通过例题介绍了函
数在下料问题、复利计算和大气压测量等方面的应用。修订版又增加
了“2.10实习作业〃一节,结合人口增长问题,安排了学生应用函数
知识于实际问题的活动。在阅读材料中介绍了数学模型方法,并结合
伽利略研究自由落体运动的历史典故,介绍了建立数学模型的一般步
骤。第三章安排了建筑规划、测定长度等实际应用较广泛的习题;在
阅读材料和研究性课题中安排了有关储蓄和分期付款的一些计算内
容。本册书的习题也适当地增加了一定量的联系实际的题目,意在多
创设些联系实际考虑问题的氛围和锻炼机会。对于这些联系实际的内
容,编写时予以了充分重视,虽然它们与真正的实际问题还有一定距
离,但是对于加强用数学的意识,为今后更广泛地使用数学创造条件,
还是有重大作用的。培养学生应用数学理论解决实际问题的能力,需
要一个循序渐进的过程,作为教材的内容与专门的数学建模讨论有所
不同,因此教材中实际问题抽象为数学问题的训练难度不能过高,而
是从联系实际的数学应用问题入手做起。教材安排联系实际的内容的
目的,不仅是为了介绍抽象理论的实际背景,有利于抽象理论的学习,
而更重要的是通过分析和解决这些问题,使学生用数学的意识和能力
得到加强。
(三)渗透数学思想方法,突出培养思维能力
本册书在编写时考虑到数学教学不应仅仅是单纯的知识传授,而
应在讲知识内容时注意对其中的数学思想方法加以提炼总结,使之能
逐步被学生掌握并对他们发挥指导作用。因此,各章的内容安排注意
对数学思想方法的体现。本册书的知识内容中蕴含着许多基本的数学
思想方法。例如,化归思想,分类方法,数形结合方法,通过否定问
题反面而肯定问题正面的证明方法反证法。对数学思想方法的介绍,
要注意符合学生的接受能力,对于高一学生来说,由于他们思维发展
及所学知识的限制,我们认为以渗透方式和画龙点睛式的总结方式进
行这方面的教学较为适宜。因此,本册书在具体处理方式上采用了这
样的做法。例如,第三章中注意了渗透〃数列与一类特殊函数相互联
系〃的观点,引导学生注意知识间的内在联系,从更高角度来认识数
列的本质,使对数列的认识同化到已有的对函数的认识之中。
由本册书内容所决定,相对来说,本册书中培养思维能力的任务,
要比培养运算能力和空间想象能力的任务更突出。为加强学生思维能
力的培养训练,本册书安排了一些探索性和开放性较强的问题。对于
这类问题,编写教材时重视了其思维训练价值,注意总结解决问题的
通法。根据《大纲》关于〃每学期至少安排一个研究性课题〃的要求,
修订版增加了“3.6研究性课题分期付款中的有关计算〃一节,意在加
强对学生的解决实际问题能力和创新意识的培养,这是教材编写中新
的改革探索。
B.内容安排
本册书作为《高中数学》的首册,在内容的选择和顺序安排方面
突出的特点是基础性强,工具作用大。以下按照本册书的编排顺序分
章简要介绍主要教学内容及对它们的总体认识。
第一章"集合与简易逻辑”的教学内容主要有:
1.关于集合的最基本的概念、术语和符号,以及一些不等式的
解法与相应解集的表示;
2.三种逻辑联结词,四种基本命题形式和充要条件。
集合论是近、现代数学的重要基础,逻辑推理在数学中有特殊的
作用。简易逻辑是形式逻辑与数理逻辑中命题逻辑的基础知识。本章
的逻辑部分安排了逻辑联结词等内容,并将四种命题及充要条件集中
在一章讨论。将〃集合与简易逻辑〃作为高中数学的起始章,既是为了
更好地发挥它们的基础工具作用,更便于数学语言的表达使用,使后
继内容的学习更顺利;也是为了及早地使学生接触它们,增加使用它
们的机会,更好地了解、理解和掌握相应的内容以及其中蕴含的数学
思想方法。因此,这一章在高中数学中占有重要的基础地位,与后续
各章都有密切的联系。
第二章“函数”的教学内容主要有:
1.关于映射和函数的基本的概念、性质及函数应用举例;
2.指数概念的扩充,指数函数;
3.对数的概念,对数函数。
映射与函数是数学中极其重要的基本概念,从数学角度刻划事物
的运动变化和相互联系离不开它们,数学中许多内容都建立在它们的
基础之上。随着高中数学内容的不断更新,微积分等近代数学内容进
入高中数学课程,映射和函数的作用范围更加广泛。高中数学将“函
数〃列为第二章,是为了更突出函数概念以及包含于其中的数学思想
的地位,使之发挥更大的作用。映射观点下的函数一般概念抽象性较
强,理解它需要一个“特殊一般特殊〃的认识过程。在初三的数学课
中,已学习了一次函数和二次函数等一些具体的函数,高一在此基础
上学习函数的一般概念,再用它来认识更广泛的具体函数(例如指数
函数,对数函数等),这样安排适时可行。为了突出重点知识及分析、
解决问题的能力,与原高中《数学》(必修本)相比,本章减少了具
体函数的介绍,未专讲哥函数,而对函数应用的强调程度有所提高。
第三章"数列"的教学内容主要有:
1.关于数列的基本概念;
2.等差数列和等比数列。
数列是以正整数为自变量的一种特殊函数…}。学习函数后,接
着学习数列是合适的。这样安排既有利于认识数列的本质,也有利于
加深和巩固对函数概念的理解。按大纲规定数列部分的教学内容和教
学目标在难度上有所控制,在高一学习它不会有太大困难。与原高中
《数学》(必修本)相比,数列的安排明显提前,这是本册书的一个
新变化。
上述三章内容互相联系,第一章的集合是原始概念,它直接关系
到第二章映射与函数的概念;函数又是非常重要的基本概念,它与第
三章的数列存在一般与特殊的关系。第一章中的不等式直接涉及第二
章中函数定义域的计算;而简易逻辑的内容,与后面各章中命题的推
理论证关系密切。因此,本册书注意整体体系安排,加强各章间的联
系,并为后续内容做好铺垫。
C.使用本册书时应注意的几个问题
本册书的编写力求贯彻《大纲》所规定高中数学的教学目的,体
现全套书编写指导思想。结合本册书中三章具体内容的特点,提请大
家注意以下几个问题。
(-)本册书在全套教科书中的基础地位
作为新编《高中数学》的第一册(上),本册书在全套教科书具
有重要的基础地位。这在前面已经说过。
对于本册书特殊的基础地位应予以充分重视,搞好基础知识的教
学、基本技能的训练和能力的培养,是用好本册书的关键。
(-)辩证唯物主义观点的培养及数学思想方法的介绍
〃培养良好的个性品质和辩证唯物主义观点〃,是高中数学的教
学目的之一。本册书的数学内容许多处都充分体现辩证思想,例如:
逻辑部分中四种命题间存在对立统一,否定之否定等关系;函数概念
中蕴含着事物的运动变化,及事物间依一定规律相互联系的观点;数
列与函数间有着特殊与一般的关系。这些内容都可以成为对学生进行
辩证唯物主义教育的素材,应寓思想教育于数学教学之中,通过运用
辩证法的观点、方法分析和解决具体问题,对学生进行潜移默化的熏
陶。
前文已述,本册书的知识内容中蕴含着许多基本的数学思想方
法。教学中应注意由浅入深,引导学生透过问题的表面理解问题的本
质。解题时不应仅仅停留在对具体题目就题论题,而应像G•波利亚
所说的那样在解题后注意"回顾反思",总结出思想方法上一些规律性
的内容。对数学思想方法的介绍,要注意符合学生的接受能力,对于
高一学生来说,由于他们思维发展及所学知识的限制,以渗透方式和
画龙点睛式的总结方式进行这方面的教学较为适宜。
(三)数学思维能力的训练
在数学思维能力方面,高中生应比初中生有较大的发展。初中数
学中推理证明主要在儿何内容中进行训练,在代数内容中偏重于培养
运算能力。本册书的内容按传统教材的划分主要属于代数部分,但其
中涉及较多思维训练的内容,例如反证法、利用函数的有关概念和性
质证明一些数学命题等。完成好这些内容的教学,有利于培养学生〃
会观察、比较、分析、综合、抽象和概括;会用归纳、演绎和类比进
行推理;会合乎逻辑地、准确地阐述自己的思想和观点;能运用数学
概念、思想和方法,辨明数学关系,形成良好的思维品质。
鉴于学生过去接触代数证明问题较少,而代数问题与儿何问题相
比抽象性一般更强些,所以有关这方面的推理论证训练应从简单问题
入手,逐步提高,注意控制难度。反证法是较特殊的证明方法,教学
中应将重点放在掌握证明过程的基本步骤,并能合乎逻辑地表述证明
的基本过程上,注意避免片面地追求题目的难度,不要给学生过重的
负担。总之,要把数学思维训练的目标定在一般学生经过努力可以达
到的适当水平。
在本册书中,为加强学生思维能力的培养训练,安排了一些探索
性和开放性较强的问题,需要采用“观察一归纳一猜想一试探
-证明〃的方式解决。对于这类问题应充分重视它们在思维训练方面
的价值,注意引导学生总结解决这类问题的通法。
(四)数学语言的使用训练
高中数学教学对学生使用数学语言的要求比初中数学教学有明
显的提高,即要求表达问题时语言更准确、更简练、更规范。符号化
是数学语言的一个显著特征,随着教学内容的不断扩充和抽象性的加
强,高中数学中要使用更多的符号和术语。例如,本册书的第一章的
教学目标就包括了让学生掌握有关集合的术语和符号,并会用它们正
确表示一些简单的集合问题。又如,第一章中的充要条件是数学各部
分内容都要涉及的,对证明充要条件的正确表述应加强训练,这不仅
有利于掌握充要条件的概念,而且有利于后面其他内容的学习。
本册书涉及反证法这种在证明过程的表达上具有特殊格式的证
法。要让学生掌握这一证法的基本步骤,就必须注意训练如何叙述证
明过程。初学这些证法时,往往既会遇到证明思路本身的难点,又会
遇到语言表达的难点。为帮助学生克服难点,应注意控制问题的难度,
从简单问题证明的叙述训练入手,而避免两种难点交织在一起。
对数学语言使用的训练应结合所学内容有的放矢地进行,教师应
注意作好示范,并给学生较充分的练习机会。
(五)加强用数学的意识
加强学生用数学的意识,引导他们把数学知识应用到相关学科和
社会生活、生产的实际中去,切实培养他们解决实际问题的能力,是
使用本册书时应注意的。本册书的编写中力求贯彻理论联系实际的原
则,尽量从实际问题出发,结合实际例子讲述抽象内容,介绍数学知
识的实际应用。例如,第二章中专门安排了〃函数的应用举例〃一节和
〃实习作业〃,通过例题介绍了函数在儿何问题、复利计算和大气压测
量等方面的应用。在阅读材料中介绍了数学模型方法,并结合自由落
体运动介绍了建立数学模型的一般步骤。第三章安排了分期付款等联
系实际的例题,以及建筑规划、测定长度等实际应用味道较浓的习题。
对于这些联系实际的内容,应予以充分重视,虽然它们与真正的实际
问题还有一定距离,但是对于高中数学联系实际还是有重大作用的。
培养学生应用数学理论解决实际问题的能力,需要一个循序渐进的过
程,将实际问题抽象为数学问题的训练难度不能过高。安排联系实际
的内容的目的,不仅是为了介绍如何从实际背景中抽象出数学模型,
更重要的是通过分析和解决些问题,使学生用数学的意识和能力得到
加强。
(六)做好初、高中数学教学的衔接过渡
作为新高中数学教科书中的第一本书,本册书是义务教育初中
数学教材的直接后继教材。因此,本册书的教学中要特别重视与初中
数学教学的衔接过渡。本册书中许多地方都涉及初、高中数学知识上
的衔接过渡。例如,在第一章中讲集合和简易逻辑时,所用的例子大
多是初中数学里学生比较熟悉的内容,这便于学生在原有知识的基础
上,通过已知的具体例子来理解新知识。第一章中有关不等式的内容,
是初中所学相关内容的继续,也是后面函数内容的预备知识。又如,
第二章中函数的内容,是在初中所学函数的对应观点下的定义和一次
函数、二次函数等具体函数类型基础上的提高。这种初、高中内容相
结合的安排,符合螺旋式上升和由具体到抽象的认识规律。初、高中
数学在教学方法上存在许多差别,初中数学的教学内容较具体,模仿
性的练习较多,比较强调基本技能训练;高中数学的内容相对说来抽
象性较强,比较强调在对基本概念理解的基础上创造地运用,对运算
能力、思维能力、空间想象能力等的要求较高。学生对于高中数学的
教学方法也需要一个适应过程,因此做好初、高中数学教学的过渡衔
接不仅要考虑知识方面,而且要考虑如何调动学生积极思维,使他们
尽快适应高中的教学方法。
四.高中教材《数学(试验修订本•必修)》第一册(下)简介
《全日制普通高级中学教科书(试验修订本-必修)数学》第一册
(下)包括“三角函数”、“平面向量”两章,是供高一年级下学期使
用的,每周4课时,本书两章教学时间约需58课时,具体分配如下:
第四章三角函数................约36课时
第五章平面向量................约22课时
研究性课题.......................3课时
A.教学内容与教学要求
本册书先安排三角函数,再安排平面向量。三角函数一章的主要
内容是任意角的三角函数,两角和与差的三角函数,三角函数的图象
和性质。平面向量一章的主要内容是向量及其运算,解斜三角形。下
面分章分析。
(一)与现行高中大纲及课本相比,三角函数内容的要求大大降
低,这主要体现在:对于任意角的三角函数的定义,只要求掌握正弦、
余弦、正切的定义,对于余切、正割、余割的定义则只要求了解;对
于同角三角函数的基本关系式,只要求掌握;对于诱导公式,只要求
掌握正弦与余弦的公式;对于两角和与两角差的三角函数公式,只要
求掌握两角和、两角差、二倍角的正弦、余弦、正切公式,对于三角
函数的图象与性质,只对正弦、余弦、正切的图象与性质提出要求,
对余切函数的图象与性质不作要求,反三角函数与三角方程是原大纲
的选学内容(但却是理工农医类高考的数学命题范围),现在只要求
在已知三角函数求角时,会用arcsinx,arccosx,arctgx表示,其
他内容均未列入大纲与课本。
从上述知识对比可看出,新大纲与课本保留了、突出了三角函数
知识的基础部分。例如,对于六种三角函数.因为余切、正割、余割
分别与正切、余弦、正弦成倒数关系,且正弦、余弦、正切比较常用,
所以应重点掌握正弦、余弦、正切的定义,知道余切、正割、余割的
定义就可以了。再比如,同角三角函数的基本关系式原来有8个(倒数
关系的有3个,商的关系的有2个,平方关系的有3个),但最基本的是
保留下来的三个。
对三角函数内容的精简.其意义可以从以下儿方面看。
1、适应了时代的发展,持别是新技术的发展,由于计算器、计
算机的普及,三角函数值的计算,三角恒等式的变形就没有必要搞得
过多、过难。
2、保留基本内容,仍可以达到培养能力的目的,要求适当,可
以减轻学生的学习负担。
3、精简为增加平面向量等新内容提供了保证,使学生的学习内
容新一点,知识面宽一点。
(二)与现行高中数学教学大纲和课本比,本册书根据新大纲的要
求安排了“平面向量”一章,而平面向量的一些内容原来只在复数的
有关内容中介绍,这是新旧大纲与课本在内容上的一个明显不同。
这部分内容的重要性,可以以下儿方面来看。
1.平面向量及其运算具有实际意义,在物理中可以看到,一个
力可以用一个向量表示,力的合成与分解可以用向量的加法与减法来
计算,功实际上是位移与力的数量积。因此,平面向量及其运算是研
究现实世界的一些问题的必备工具。
2.平面向量在高中数学教学内容中有广泛的应用,从本书可以
看到,利用向量可以得到线段的定比分点公式,平移公式,可以证明
正弦定理;余弦定理。在以后的内容中,我们还会看到向量在复数中
的应用等等。由于应用向量可以将形的推证转化成数的运算,因而向
量是解决许多数学问题的有力工具。
3.平面向量的概念与运算很容易推广到三维空间,乃至n维空间,
是后续内容的基础。新大纲安排了利用空间向量作为工具处理传统的
综合儿何的改革方案。学好平面向量是这项改革的必备条件。
B.本书的编写特点
(一)努力使新增内容易教易学
为了使“平面向量”内容易于学生学习,本书在编写时注意了
以下几方面的问题。
1.以学生已有的物理知识和几何内容为背景,直观介绍向量的
内容。例如,在引言中用小船的位移引入向量的概念,使学生明确向
量既有大小,又有方向,又如,一开始就介绍向量的几何表示--一
有向线段,并将几何表示贯穿向量运算的始终。再如,利用物理中功
的概念引入数量积。
2.注意向量运算与数的运算的对比。学习向量运算与学习数的
运算有类似之处:从学习顺序上看,都是先定义运算,再研究运算性
质;从学习内容来看,向量运算具有与数的运算类似的良好性质。在
编写时,既注意了向量运算与数的运算的联系,例如向量的减法类似
于数的减法(定义向量a与向量b的差为向量a与向量b的相反向量
的和),又指出向量运算与数的运算的区别,例如向量的数量积不满
足结合律。通过对比,力图使学生便于理解新知识,又不至于与旧知
识混淆。
3.对向量的应用要求适当。本书中除在正文中利用向量推导定
比分点公式、平移公式,证明正弦定理、余弦定理以外,不要求学生
独立地用向量证明平面儿何题。
(二)三角函数的内容得到精简
在按照大纲编写三角函数时,注意了以下儿方面的问题:
1.严格按大纲的内容与要求进行编写,减少的内容不再列入课
本,要求降低的内容则以例题、习题的形式出现。同时一,也充分注意
了内容变化产生的影响,对相关内容作了相应处理。
2.在精简传统内容的同时,也注意了对保留下来的传统内容的
新处理,例如余弦函数y=cosx的图象原来是利用余弦线画出的,现
在则利用将余弦函数的图象看作由正弦函数丫=$1小向左平移门/2个
单位得到。这们处理使学生从“形”上加深了对正弦函数、余弦函
数的关系的认识,也避免了将余弦线“竖起来”的较为复杂的作图。
3.充分揭示知识的内在联系。本章三角公式较多,在介绍这些
公式时,除了强调各自的特点及用途,还指出它们的相互联系与推导
线索,做到条理清晰,便于记忆和运用。此外,在本章“小结与复习”
中,还利用框图的形式展示了本章知识间的内在联系、逻辑顺序、主
从地位,便于学生从整体上把握教学内容。
(三)努力建立合理的教材体系
本册书先安排三角函数,再安排平面向量,并把解斜三角形归入
平面向量一章,安排在向量及其运算之后,这样的安排主要基于以下
考虑。
1.本套书中数学第一册(上)的第二章函数中介绍了映射与函数,
讨论了指数函数与对数函数的图象与性质。先安排三角函数的内容,
可以更好地承接函数的内容。
2.先学三角函数,可以为学习平面向量作准备。学习平面向量
的某些内容(向量的数量积),需要用到钝角的三角函数,先讲平面向
量,就要局限于锐角三角函数的范围讲,或者插入钝角三角函数的介
绍。这样安排不如先学三角函数,学了三角函数,钝角的三角函数的
求值也就随之解决了。
3.将解斜三角形的内容安排在平面向量一章中向量及其运算的
后面,是因为本册书中,为使学生了解向量的一些应用,正、余弦定
理是用向量证明的。这样安排比较紧凑。
4.将平面向量安排在高一第二学期末,便于向量的内容在高二
年级教科书有关章节中加以运用。
(四)注意知识的应用
1.注意知识的实际应用
大纲明确了解决实际问题能力的含义。学以致用可以更好地掌握
基础知识,又可以提高学生解决实际问题的能力。
本书三角函数一章引言就提出了一个实际问题,以此引入三角函
数的内容,并在学习了有关内容之后,解答了这个实际问题。
在解斜三角形部分,不仅安排了应用举例,还安排了实习作业。
要利用这些内容,使学生受到把实际问题抽象成数学问题的训练,切
实培养学生解决实际问题的能力。
本书的实习作业是高中阶段的第一个实习作业,编写时借鉴了义
务教育初中数学教科书(人教版)中实习作业的编写经验,从以下儿点
出发进行考虑。
(1)实习作业紧密结合所在章的教学内容,其目的是巩固学生所
学知识、技能,提高学生分析和解决简单的实际问题的能力、培养学
生动手操作以及用数学语言表达实习过程和实习结果的能力,增强学
生用数学的意识。
(2)实习作业安排学生日常生活中比较熟悉的问题,实习条件易
于实现,实习内容以适合小组工作为主,使学生得以在实习中用数学
语言互相交流,阐述自己的思想和观点。
(3)实习作业注意渗透思想品德教育,通过实习作业培养学生良
好的个性品质和辩证唯物主义的观点。
(4)实习作业的最后,要求写出实习报告,使学生能够把自己对
于一个具体问题的认识完整化,并允许发现和列出其他尚待研究的问
题。
根据上述想法,本书对照初中制做测倾角器和测量国旗旗杆高度
的实习作业,安排了利用解斜三角形测量的实习作业,以期达到理论
联系实际的目的。
2.加强学科间的横向联系
解决实际问题的能力包括提出、分析和解决在相关学科中的数学
问题。另外,高中课程是一个整体,因此有必要加强学科间的横向联
系。
在本书三角函数一章,指出了正弦曲线与物理中正弦电流的联
系,安排了“同频率正弦电流相加,频率不变”的阅读材料,因此讲
解正弦函数时一,可以联系一些它在物理中的背景材料以及它在物理中
的应用。
在本书平面向量一章,则更多地利用了物理的背景材料,例如利
用位移力、速度、加速度引入向量的概念,利用功的概念引入向量的
数量积等等。在这一章,还安排了研究性课题“向量在物理中的应
用”。
总之,要加强相关学科的联系。一方面,利用相关学科的材料引
出有关的数学概念和规律;另一方面,引导学生把数学知识应用到相
关学科中。
C.教材使用中应注意的几个问题
(一)注意与初中数学内容相衔接
在初中,学生学习了锐角三角函数,解直角三角形及其应用。在
本书中,要学习任意角的三角函数,解斜三角形及其应用,由于高中
内容是初中相应内容的推广,因而要注意它们的衔接。
例如,应指出用直角三角形有关边的比与用坐标定义锐角三角函
数是一致的,而坐标定义对任意角三角函数都适用。这样,既承接了
初中的内容.又引出了新内容。再如,把勾股定理看作已知两边及其
夹角求第三边从而引出余弦定理,都能达到温故知新的效果。另外,
由己知元素求未知元素是解直角三角形与解斜三角形的共同思想。
平面向量一章也要利用初、高中内容的联系(如向量运算与数的
运算的对比),搞好初、高中内容的衔接。
(二)注意高中数学各部分内容的相互联系
新高中数学课程为了有利于精简教学内容,提高教学效益,有利
于加强数学各部分内容的相互联系与知识的综合运用,将代数、儿何
等内容综合编排。在本书中,向量的引入,使高中数学各部分内容的
联系加强了。例如,利用向量得到了定比分点坐标公式、平移公式以
及正弦定理、余弦定理。
此外,高一上学期学习了函数的内容,学习三角函数的内容,要
以函数的一般内容(定义域、值域、奇偶性、单调性等)为指导。这样
做有助于学生对知识的理解。例如,角的概念的推广,弧度制的引入
都是为了讲解三角函数的定义域作准备的。又如,正弦、余弦诱导公
式的作用之一是得到关于三角函数奇偶性、周期性的结论。
总之,在教学中,注意知识的整体性,有助于学生将所学知识融
汇贯通。需要指出的是,既要注意在旧知识的基础上发展新知识,还
要注意新知识对旧知识的影响(如用新方法解决旧问题等等)
(三)注意培养学生良好的个性品质和辩证唯物主义观点
本书中数形结合的内容较多,如三角函数的图象和性质,平面向
量用有向线段表示等等,要利用这些内容的特点,引发学生学习的兴
趣。要通过循序渐进的教学,使学生掌握基础知识、基本技能,发展
能力,同时使他们具有顽强的学习毅力,充分的学习信心,实事求是
的科学态度,独立思考、勇于探索创造的精神。
本书内容蕴含了数学来源于实践又反过来作用于实践的观点.蕴
含了对立统一、运动变化、相互联系、相互转化等观点。如由于实际
的需要产生了三角函数,并使三角函数的理论丰富和发展,同时这些
理论又用于解决实际问题。而三角函数的图象、平移等内容则生动地
反映了运动变化、相互联系、相互转化的观点。教学中,要利用这些
内容对学生进行辩证唯物主义观点的教育,使学生形成科学的世界
观。
新课程数学大纲解读
一、高考数学科的考试性质
普通高等学校招生全国统一考试是合格的高中毕业生和具有
同等学力的考生参加的选拔性考试.高等学校根据考生成绩,按已确
定的招生计划,德、智、体全面衡量,择优录取.因此,高考应具有
较高的信度、效度,必要的区分度和适当的难度.
二、确定高考数学科考试内容的依据
文史类高考数学科考试内容的确定:根据普通高等学校对新生文化素
质的要求,依据中华人民共和国教育部2003年颁布的《普通高中课程
方案(实验)》(教基[2003]6号)和《普通高中数学课程标准(实验)》
(2003年4月第1版,人民教育出版社出版)的必修课程,选修课程系列
1和系列4的内容.
其中必修课程是:
数学1,2,3,4,5.
包括:
1.集合;
2.函数概念与基本初等函数1(指数函数、对数函数、塞函数);
3.立体儿何初步;
4.平面解析儿何初步;
5.算法初步;
6.统计;
7.概率;
8.基本初等函数n(三角函数);
9.平面向量;
10.三角恒等变换;
11.解三角形;
12.数列;
13.不等式.
选修课程系列1的内容分两个模块:1—1和1—2.其中
模块1—1的内容包括:
1.常用逻辑用语;
2.圆锥曲线与方程;
3.导数及其应用.
模块1—2的内容包括:
1.统计案例;
2.推理与证明;
3.数系的扩充与复数的引入;
4.框图.
必考课程的内容包括20项:
1.集合;2.函数概念与
基本初等函数I;
3.立体儿何初步;4.平面解析儿何初步;
5.算法初步;6.统计;
7.概率;8.基本初等函
数II;
9.平面向量;10.三角恒等变换;
11.解三角形;12.数列;
13.不等式;14.常用逻辑用语;
15.圆锥曲线与方程;16.导数及其应用;
17.统计案例;18.推理与证明;
19.数系的扩充与复数的引入;
20.框图.
理工类高考数学科考试内容的确定:根据普通高等学校对新生文化素
质的要求,依据中华人民共和国教育部2003年颁布的《普通高中课程
方案(实验)》(教基[2003]6号)和《普通高中数学课程标准(实验)》
(2003年4月第1版,人民教育出版社出版)的必修课程,选修课程系列
1和系列4的内容.
其中必修课程是:
数学1,2,3,4,5.
包括:
1.集合;
2.函数概念与基本初等函数1(指数函数、对数函数、事函数);
3.立体儿何初步;
4.平面解析儿何初步;
5.算法初步;
6.统计;
7.概率;
8.基本初等函数n(三角函数);
9.平面向量;
10.三角恒等变换;
11.解三角形;
12.数列;
13.不等式.
选修课程系列2的内容分三个模块:
2-1,2—2和2—3.其中
模块2—1的内容包括:
1.常用逻辑用语;
2.圆锥曲线与方程;
3.空间中的向量与上体几何.
模块2—2的内容包括:
2.导数及其应用;
3.推理与证明;
4.数系的扩充与复数的引入.
模块2—3的内容包括:
1.计数原理;
2.概率;
3.统计案例.
必考课程的内容包括21项:
1.集合;2.函数概念
与基本初等函数I;
3.立体几何初步;4.平面解析几何初步;
5.算法初步;6.统计;
7.概率;8.基本初等
函数II;
9.平面向量;10.三角恒等变换;
11.解三角形;12.数列;
13.不等式;14.常用逻辑用
语;
15.圆锥曲线与方程;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年学生寝室卫生的管理制度细则
- 速写的课程设计
- 二零二五版电商平台电商平台数据分析与产品优化合同3篇
- 年度特种变压器战略市场规划报告
- 2025年度社区停车位产权转让协议范本4篇
- 2025年度锌锭国际贸易结算服务合同3篇
- 2025年度智能大楼能源管理系统施工合同4篇
- 老虎画画贺卡课程设计
- 二零二五版共享单车运营管理服务合同4篇
- 2025年度个人别墅买卖合同范本8篇
- 《酸碱罐区设计规范》编制说明
- 桥梁监测监控实施方案
- 书籍小兵张嘎课件
- 艺术哲学:美是如何诞生的学习通超星期末考试答案章节答案2024年
- 北京海淀区2025届高三下第一次模拟语文试题含解析
- 量子医学治疗学行业投资机会分析与策略研究报告
- 多重耐药菌病人的管理-(1)课件
- (高清版)TDT 1056-2019 县级国土资源调查生产成本定额
- 环境监测对环境保护的意义
- 2023年数学竞赛AMC8试卷(含答案)
- 2023年十天突破公务员面试
评论
0/150
提交评论