版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
宇航用某型号激光器在电装前的存储阶段发生严重腐蚀,壳体镀金层表面及其与陶瓷绝缘子的焊接位置表面大片区域发生变色,并呈放射状向周围扩散。该型号激光器壳体材料为FeCo、Ni、Au,焊接区为AgCu焊料,陶瓷绝缘子为Al2O3;而同批次同型号相同工艺材料的壳体及焊接区表面完好。该器件的存储环境温度为22℃,湿度为50%。为查明腐蚀原因,避免类似事故再次发生,本文通过腐蚀形貌观察、腐蚀产物能谱分析、制样镜检、金相及SEM等理化检验方法对失效原因进行了分析。一、理化检验与结果1、宏观检查对失效件进行宏观检查,发现图1标识区域为变色最严重区域,其表面腐蚀变色形貌如图1b所示。从图中可见:LD激光器镀金层表面大片区域发生腐蚀变色,并呈放射状向四周扩散。另外,部分引脚焊盘的周边也存在腐蚀变色现象。a)整体形貌
b)局部腐蚀变色形貌图1
LD激光器的宏观形貌2、微观分析采用扫描电子显微镜对激光器表面形貌进行检查,结果如图2所示,变色区Ⅰ表面的腐蚀形貌,镀金层表面附着有大量疏松腐蚀产物;未变色区Ⅱ表面的局部放大形貌,镀层表面洁净、结构未见异常。a)变色与未变色形貌
b)Ⅰ与Ⅱ处放大图2
LD激光器壳体表面腐蚀变色的SEM形貌表1
激光器表面不同区域EDS分析结果(质量分数)
(%)在图2所示位置对激光器表面的腐蚀产物及未变色区域进行能谱(EDS)的对比分析,结果如表1所示。能谱分析结果表明:腐蚀产物主要含C、O、S、Ag、Cu、Au等元素,而未变色区域主要成分为Au,且不含S、Ag、Cu,据此推测镀金层表面变色区域附着的腐蚀产物的物相可能为Ag、Cu的硫化物。3、金相检测将上述激光器灌封后沿引脚轴向进行磨抛,对激光器表面变色区的镀层完整性进行金相检查。图3a为壳体与陶瓷绝缘体焊接位置附近低倍金相形貌,其镀层变色区域与焊接区域的高倍金相形貌如图3b、3c所示。由图3b可知,壳体表面变色位置的镀金层与镀镍层完整致密,未见镀层破损脱落或腐蚀通道;但在壳体变色位置与陶瓷绝缘子的焊接界面处发现开裂现象,开裂位置及金相形貌如图3c所示。另外,从图3d中开裂位置高倍金相形貌可以看出,在焊接位置顶端,陶瓷绝缘子与焊料表面镀层结合处较为疏松。a)低倍金相形貌
b)Ⅰ处高倍金相形貌c)Ⅱ处高倍金相形貌
d)Ⅲ处高倍金相形貌图3
焊接区剖面金相形貌4、扫描电镜物相分析使用扫描电子显微镜与能谱分析仪,对壳体镀层表面的腐蚀产物与陶瓷绝缘子-焊料焊接界面的形貌与成分进行检测。陶瓷绝缘子与壳体焊接位置的形貌如图4所示,裂纹从陶瓷绝缘子内部穿过陶瓷绝缘子表面的mo-mo层扩展到焊料。图4
焊接区剖面SEM形貌从图4中Ⅰ放大和Ⅱ放大可以看出,变色区壳体镀层表面及焊接区镀层表面镀镍层与镀金层完整致密,在镀金层表面均存在腐蚀产物,对图中标识区域进行EDX能谱测试,EDX测试结果显示,图中标识位置均存在主要元素为Ag、S、Cu的产物,从而确认变色区域表面为Ag、Cu的硫化物。如图5所示,对图4中Ⅲ区域进行面扫描分析,从面扫描结果可以看出:AgCu焊料中的富Cu相在焊接界面与Ni发生互溶,并生成金属间化合物,焊接界面附近焊料内以富银相为主。另外,在焊接界面及焊料镀层部分位置均有S元素分布。图5
焊接区剖面SEM形貌Ⅲ处局部面扫描分布为进一步确认焊接界面的腐蚀程度,在图6所示位置对焊接顶端及裂纹周边位置进行能谱(EDS)分析,结果如表2所示。能谱分析结果表明:在陶瓷绝缘子与焊料界面顶端,结合较为疏松位置,S含量较高。沿裂纹向陶瓷绝缘子内部延伸方向,S含量降低。在谱图5位置处,已经不含S。另外,在S元素分布区域,均有Ag、Cu分布。图6
焊接区局部SEM形貌表2
焊接位置不同区域EDS分析结果(质量分数)
(%)二、失效原因分析将上述激光器沿引脚轴向继续磨抛,对激光器表面其他变色位置进行剖面检查,图7a为陶瓷绝缘子与壳体焊接位置形貌,裂纹从陶瓷绝缘子内部穿过陶瓷绝缘子表面的mo-mo层扩展到焊料,与图4所示剖面焊接位置处裂纹路径一致。a)焊接区整体形貌
b)局部放大形貌图7
陶瓷绝缘子与壳体焊接位置的SEM形貌对图7b中标示区域进行能谱(EDX)分析,从能谱结果可以看出,焊料区镀层表面物质的主要成分为Ag、S、Cu、Au,说明变色区表面的腐蚀产物均为Ag、Cu的硫化物,如表3所示。另外,在焊接区与陶瓷绝缘子的焊接界面处,均有S、Ag、Cu元素分布,且S含量沿裂纹向陶瓷绝缘子内部延伸方向逐渐降低,与图6所示位置的元素分布情况类似。表3焊接位置不同区域EDS分析结果(质量分数)
(%)将同批次同型号相同工艺材料未发生腐蚀的激光器进行灌封并沿引脚进行轴向磨抛,对陶瓷绝缘子与壳体焊接位置的形貌进行SEM检查。从图8a可以看出,裂纹仅在陶瓷绝缘子内部,并没有穿过陶瓷绝缘子表面继续往外扩展。图8b为顶端焊料区与陶瓷绝缘子的焊接形貌,在焊接位置顶端,陶瓷绝缘子与焊料表面镀层结合良好,且焊料区镀层表面无Ag、Cu的硫化物。a)焊接区整体形貌
b)局部放大形貌图8
陶瓷绝缘子与壳体焊接位置的SEM形貌基于上述电镜观察及物相分析的结果,再结合两处变色剖面及同批次同型号未变色剖面的差异。通过对比,发现激光器表面变色主要是由于陶瓷绝缘子与焊接区之间存在贯穿裂纹,为腐蚀介质进入界面及AgCu焊料的迁移提供了通道。另外,在焊接位置顶端,陶瓷绝缘子与焊料表面镀层结合处较为疏松,更加有利于腐蚀介质的进入及AgCu焊料的迁出。焊接区的AgCu焊料沿裂纹迁移至壳体表面后发生了爬行腐蚀,即在含硫物质的作用下生成大量Ag、Cu的硫化物,并在Ag、Cu的暴露面上及其周围扩散、堆集,从而导致激光器表面大片区域发生变色。且空气中的含硫物质可引起Ag、Cu的爬行腐蚀,而界面位置开裂就会加快气体介质的进入,使Ag、Cu的爬行腐蚀速度加快。失效激光器的陶瓷/可伐封接工艺为:陶瓷绝缘子表面烧结Mo层后镀Ni,后与AgCu焊料进行焊接。但Ni的富集会导致钼的海绵强度下降,造成AgCu焊料焊接陶瓷时强度较低,且钼层本身强度较低,因而容易出现开裂现象。三、结论与建议综合两处变色剖面与未变色剖面的差异以及分析结果表明:陶瓷与焊接界面位置开裂,导致AgCu焊料发生爬行腐蚀,致使激光器表面大片区域发生变色。而未发生失效现象的同批次同型号激光器在陶瓷绝缘子内部也发现开裂现象,但裂纹没有扩展至焊接界面,后续仍存在裂纹扩展至界面的风险。宇航用元器件发射
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2030年动力电池电解液行业市场现状供需分析及投资评估规划分析研究报告
- 2024-2030年功能面料产品入市调查研究报告
- 2024-2030年冻干猫粮行业市场发展分析及投资前景研究报告
- 2024-2030年内存卡产业规划及项目案例专项研究报告
- 2024-2030年养老机构行业市场深度分析及竞争格局与投资价值研究报告
- 2024-2030年全球萤石行业竞争力剖析与供给发展趋势分析研究报告版
- 2024-2030年全球及中国车载娱乐行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 2024-2030年全球及中国财务结算软件行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 2024-2030年全球及中国薄膜电容器(TFCP)行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 2024年技术服务合同终止条款补充合同
- 共和国勋章获得者申纪兰
- 津巴布韦地区金矿开发投资项目可行性研究报告
- 安徽省江淮十校2024届高三第二次联考试题生物
- 人工智能与物联网的融合发展
- 肾结石一病一品
- 2023年安全工程师《安全生产技术基础》考试备考重点题库(600题版)
- 民事检察监督程序中检察机关调查取证
- 管道工程新材料与新工艺研究
- 2024年政府采购评审专家入库考试真题附含答案
- 2023年烟草专卖技能鉴定题库
- 中控ECS-700系统简介
评论
0/150
提交评论