版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省深圳市耀华实验校2023-2024学年中考数学模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.对于实数x,我们规定[x]表示不大于x的最大整数,如[4]=4,[]=1,[﹣2.5]=﹣3.现对82进行如下操作:82[]=9[]=3[]=1,这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1()A.1 B.2 C.3 D.42.已知某校女子田径队23人年龄的平均数和中位数都是13岁,但是后来发现其中一位同学的年龄登记错误,将14岁写成15岁,经重新计算后,正确的平均数为a岁,中位数为b岁,则下列结论中正确的是()A.a<13,b=13B.a<13,b<13C.a>13,b<13D.a>13,b=133.在一个直角三角形中,有一个锐角等于45°,则另一个锐角的度数是()A.75° B.60° C.45° D.30°4.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是(
)A.16cm B.18cm C.20cm D.21cm5.某校数学兴趣小组在一次数学课外活动中,随机抽查该校10名同学参加今年初中学业水平考试的体育成绩,得到结果如下表所示:下列说法正确的是()A.这10名同学体育成绩的中位数为38分B.这10名同学体育成绩的平均数为38分C.这10名同学体育成绩的众数为39分D.这10名同学体育成绩的方差为26.如图,已知两个全等的直角三角形纸片的直角边分别为、,将这两个三角形的一组等边重合,拼合成一个无重叠的几何图形,其中轴对称图形有()A.3个; B.4个; C.5个; D.6个.7.已知一组数据:12,5,9,5,14,下列说法不正确的是()A.平均数是9 B.中位数是9 C.众数是5 D.极差是58.如果向北走6km记作+6km,那么向南走8km记作()A.+8kmB.﹣8kmC.+14kmD.﹣2km9.如图,已知E,F分别为正方形ABCD的边AB,BC的中点,AF与DE交于点M,O为BD的中点,则下列结论:①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤.其中正确结论的是()A.①③④ B.②④⑤ C.①③⑤ D.①③④⑤10.2016的相反数是()A. B. C. D.11.不等式组的整数解有()A.0个 B.5个 C.6个 D.无数个12.现有两根木棒,它们的长分别是20cm和30cm,若不改变木棒的长短,要钉成一个三角形木架,则应在下列四根木棒中选取()A.10cm的木棒 B.40cm的木棒 C.50cm的木棒 D.60cm的木棒二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,正△ABC的边长为2,顶点B、C在半径为的圆上,顶点A在圆内,将正△ABC绕点B逆时针旋转,当点A第一次落在圆上时,则点C运动的路线长为(结果保留π);若A点落在圆上记做第1次旋转,将△ABC绕点A逆时针旋转,当点C第一次落在圆上记做第2次旋转,再绕C将△ABC逆时针旋转,当点B第一次落在圆上,记做第3次旋转……,若此旋转下去,当△ABC完成第2017次旋转时,BC边共回到原来位置次.14.函数的自变量的取值范围是.15.如图,在△ABC中,∠A=70°,∠B=50°,点D,E分别为AB,AC上的点,沿DE折叠,使点A落在BC边上点F处,若△EFC为直角三角形,则∠BDF的度数为______.16.如图,已知点A(2,2)在双曲线上,将线段OA沿x轴正方向平移,若平移后的线段O'A'与双曲线的交点D恰为O'A'的中点,则平移距离OO'长为____.17.正五边形的内角和等于______度.18.在平面直角坐标系中,点A,B的坐标分别为(m,7),(3m﹣1,7),若线段AB与直线y=﹣2x﹣1相交,则m的取值范围为__.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知直线与抛物线相交于A,B两点,且点A(1,-4)为抛物线的顶点,点B在x轴上.(1)求抛物线的解析式;(2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.20.(6分)如图:求作一点P,使,并且使点P到的两边的距离相等.21.(6分)如图,点D为△ABC边上一点,请用尺规过点D,作△ADE,使点E在AC上,且△ADE与△ABC相似.(保留作图痕迹,不写作法,只作出符合条件的一个即可)22.(8分)某校在一次大课间活动中,采用了四种活动形式:A、跑步,B、跳绳,C、做操,D、游戏.全校学生都选择了一种形式参与活动,小杰对同学们选用的活动形式进行了随机抽样调查,根据调查统计结果,绘制了不完整的统计图.请结合统计图,回答下列问题:(1)本次调查学生共人,a=,并将条形图补充完整;(2)如果该校有学生2000人,请你估计该校选择“跑步”这种活动的学生约有多少人?(3)学校让每班在A、B、C、D四种活动形式中,随机抽取两种开展活动,请用树状图或列表的方法,求每班抽取的两种形式恰好是“跑步”和“跳绳”的概率.23.(8分)如图,已知AB是⊙O的弦,C是的中点,AB=8,AC=,求⊙O半径的长.24.(10分)如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=1.求抛物线的函数表达式.当t为何值时,矩形ABCD的周长有最大值?最大值是多少?保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.25.(10分)如图,在△ABC中,以AB为直径的⊙O交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,且DH是⊙O的切线,连接DE交AB于点F.(1)求证:DC=DE;(2)若AE=1,,求⊙O的半径.26.(12分)发现如图1,在有一个“凹角∠A1A2A3”n边形A1A2A3A4……An中(n为大于3的整数),∠A1A2A3=∠A1+∠A3+∠A4+∠A5+∠A6+……+∠An﹣(n﹣4)×180°.验证如图2,在有一个“凹角∠ABC”的四边形ABCD中,证明:∠ABC=∠A+∠C+∠D.证明3,在有一个“凹角∠ABC”的六边形ABCDEF中,证明;∠ABC=∠A+∠C+∠D+∠E+∠F﹣360°.延伸如图4,在有两个连续“凹角A1A2A3和∠A2A3A4”的四边形A1A2A3A4……An中(n为大于4的整数),∠A1A2A3+∠A2A3A4=∠A1+∠A4+∠A5+∠A6……+∠An﹣(n﹣)×180°.27.(12分)某农场要建一个长方形ABCD的养鸡场,鸡场的一边靠墙,(墙长25m)另外三边用木栏围成,木栏长40m.(1)若养鸡场面积为168m2,求鸡场垂直于墙的一边AB的长.(2)请问应怎样围才能使养鸡场面积最大?最大的面积是多少?
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解析】分析:[x]表示不大于x的最大整数,依据题目中提供的操作进行计算即可.详解:121∴对121只需进行3次操作后变为1.故选C.点睛:本题是一道关于无理数的题目,需要结合定义的新运算和无理数的估算进行求解.2、A【解析】试题解析:∵原来的平均数是13岁,∴13×23=299(岁),∴正确的平均数a=299-12∵原来的中位数13岁,将14岁写成15岁,最中间的数还是13岁,∴b=13;故选A.考点:1.平均数;2.中位数.3、C【解析】
根据直角三角形两锐角互余即可解决问题.【详解】解:∵直角三角形两锐角互余,∴另一个锐角的度数=90°﹣45°=45°,故选C.【点睛】本题考查直角三角形的性质,记住直角三角形两锐角互余是解题的关键.4、C【解析】试题分析:已知,△ABE向右平移2cm得到△DCF,根据平移的性质得到EF=AD=2cm,AE=DF,又因△ABE的周长为16cm,所以AB+BC+AC=16cm,则四边形ABFD的周长=AB+BC+CF+DF+AD=16cm+2cm+2cm=20cm.故答案选C.考点:平移的性质.5、C【解析】试题分析:10名学生的体育成绩中39分出现的次数最多,众数为39;第5和第6名同学的成绩的平均值为中位数,中位数为:=39;平均数==38.4方差=[(36﹣38.4)2+2×(37﹣38.4)2+(38﹣38.4)2+4×(39﹣38.4)2+2×(40﹣38.4)2]=1.64;∴选项A,B、D错误;故选C.考点:方差;加权平均数;中位数;众数.6、B【解析】分析:直接利用轴对称图形的性质进而分析得出答案.详解:如图所示:将这两个三角形的一组等边重合,拼合成一个无重叠的几何图形,其中轴对称图形有4个.故选B.点睛:本题主要考查了全等三角形的性质和轴对称图形,正确把握轴对称图形的性质是解题的关键.7、D【解析】分别计算该组数据的平均数、中位数、众数及极差后即可得到正确的答案平均数为(12+5+9+5+14)÷5=9,故选项A正确;重新排列为5,5,9,12,14,∴中位数为9,故选项B正确;5出现了2次,最多,∴众数是5,故选项C正确;极差为:14﹣5=9,故选项D错误.故选D8、B【解析】
正负数的应用,先判断向北、向南是不是具有相反意义的量,再用正负数表示出来【详解】解:向北和向南互为相反意义的量.若向北走6km记作+6km,那么向南走8km记作﹣8km.故选:B.【点睛】本题考查正负数在生活中的应用.注意用正负数表示的量必须是具有相反意义的量.9、D【解析】
根据正方形的性质可得AB=BC=AD,∠ABC=∠BAD=90°,再根据中点定义求出AE=BF,然后利用“边角边”证明△ABF和△DAE全等,根据全等三角形对应角相等可得∠BAF=∠ADE,然后求出∠ADE+∠DAF=∠BAD=90°,从而求出∠AMD=90°,再根据邻补角的定义可得∠AME=90°,从而判断①正确;根据中线的定义判断出∠ADE≠∠EDB,然后求出∠BAF≠∠EDB,判断出②错误;根据直角三角形的性质判断出△AED、△MAD、△MEA三个三角形相似,利用相似三角形对应边成比例可得,然后求出MD=2AM=4EM,判断出④正确,设正方形ABCD的边长为2a,利用勾股定理列式求出AF,再根据相似三角形对应边成比例求出AM,然后求出MF,消掉a即可得到AM=MF,判断出⑤正确;过点M作MN⊥AB于N,求出MN、NB,然后利用勾股定理列式求出BM,过点M作GH∥AB,过点O作OK⊥GH于K,然后求出OK、MK,再利用勾股定理列式求出MO,根据正方形的性质求出BO,然后利用勾股定理逆定理判断出∠BMO=90°,从而判断出③正确.【详解】在正方形ABCD中,AB=BC=AD,∠ABC=∠BAD=90°,
∵E、F分别为边AB,BC的中点,
∴AE=BF=BC,
在△ABF和△DAE中,,
∴△ABF≌△DAE(SAS),
∴∠BAF=∠ADE,
∵∠BAF+∠DAF=∠BAD=90°,
∴∠ADE+∠DAF=∠BAD=90°,
∴∠AMD=180°-(∠ADE+∠DAF)=180°-90°=90°,
∴∠AME=180°-∠AMD=180°-90°=90°,故①正确;
∵DE是△ABD的中线,
∴∠ADE≠∠EDB,
∴∠BAF≠∠EDB,故②错误;
∵∠BAD=90°,AM⊥DE,
∴△AED∽△MAD∽△MEA,
∴∴AM=2EM,MD=2AM,
∴MD=2AM=4EM,故④正确;
设正方形ABCD的边长为2a,则BF=a,
在Rt△ABF中,AF=∵∠BAF=∠MAE,∠ABC=∠AME=90°,
∴△AME∽△ABF,
∴,
即,
解得AM=
∴MF=AF-AM=,
∴AM=MF,故⑤正确;
如图,过点M作MN⊥AB于N,
则即解得MN=,AN=,
∴NB=AB-AN=2a-=,
根据勾股定理,BM=过点M作GH∥AB,过点O作OK⊥GH于K,
则OK=a-=,MK=-a=,
在Rt△MKO中,MO=根据正方形的性质,BO=2a×,
∵BM2+MO2=
∴BM2+MO2=BO2,
∴△BMO是直角三角形,∠BMO=90°,故③正确;
综上所述,正确的结论有①③④⑤共4个.故选:D【点睛】本题考查了正方形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理的应用,勾股定理逆定理的应用,综合性较强,难度较大,仔细分析图形并作出辅助线构造出直角三角形与相似三角形是解题的关键.10、C【解析】根据相反数的定义“只有符号不同的两个数互为相反数”可知:2016的相反数是-2016.故选C.11、B【解析】
先解每一个不等式,求出不等式组的解集,再求整数解即可.【详解】解不等式x+3>0,得x>﹣3,解不等式﹣x≥﹣2,得x≤2,∴不等式组的解集为﹣3<x≤2,∴整数解有:﹣2,﹣1,0,1,2共5个,故选B.【点睛】本题主要考查了不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.12、B【解析】
设应选取的木棒长为x,再根据三角形的三边关系求出x的取值范围.进而可得出结论.【详解】设应选取的木棒长为x,则30cm-20cm<x<30cm+20cm,即10cm<x<50cm.故选B.【点睛】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边差小于第三边是解答此题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、,1.【解析】
首先连接OA′、OB、OC,再求出∠C′BC的大小,进而利用弧长公式问题即可解决.因为△ABC是三边在正方形CBA′C″上,BC边每12次回到原来位置,2017÷12=1.08,推出当△ABC完成第2017次旋转时,BC边共回到原来位置1次.【详解】如图,连接OA′、OB、OC.∵OB=OC=,BC=2,∴△OBC是等腰直角三角形,∴∠OBC=45°;同理可证:∠OBA′=45°,∴∠A′BC=90°;∵∠ABC=60°,∴∠A′BA=90°-60°=30°,∴∠C′BC=∠A′BA=30°,∴当点A第一次落在圆上时,则点C运动的路线长为:.∵△ABC是三边在正方形CBA′C″上,BC边每12次回到原来位置,2017÷12=1.08,∴当△ABC完成第2017次旋转时,BC边共回到原来位置1次,故答案为:,1.【点睛】本题考查轨迹、等边三角形的性质、旋转变换、规律问题等知识,解题的关键是循环利用数形结合的思想解决问题,循环从特殊到一般的探究方法,所以中考填空题中的压轴题.14、x≠1【解析】该题考查分式方程的有关概念根据分式的分母不为0可得X-1≠0,即x≠1那么函数y=的自变量的取值范围是x≠115、110°或50°.【解析】
由内角和定理得出∠C=60°,根据翻折变换的性质知∠DFE=∠A=70°,再分∠EFC=90°和∠FEC=90°两种情况,先求出∠DFC度数,继而由∠BDF=∠DFC﹣∠B可得答案.【详解】∵△ABC中,∠A=70°、∠B=50°,∴∠C=180°﹣∠A﹣∠B=60°,由翻折性质知∠DFE=∠A=70°,分两种情况讨论:①当∠EFC=90°时,∠DFC=∠DFE+∠EFC=160°,则∠BDF=∠DFC﹣∠B=110°;②当∠FEC=90°时,∠EFC=180°﹣∠FEC﹣∠C=30°,∴∠DFC=∠DFE+∠EFC=100°,∠BDF=∠DFC﹣∠B=50°;综上:∠BDF的度数为110°或50°.故答案为110°或50°.【点睛】本题考查的是图形翻折变换的性质及三角形内角和定理,熟知折叠的性质、三角形的内角和定理、三角形外角性质是解答此题的关键.16、1.【解析】
直接利用平移的性质以及反比例函数图象上点的坐标性质得出D点坐标进而得出答案.【详解】∵点A(2,2)在双曲线上,∴k=4,∵平移后的线段O'A'与双曲线的交点D恰为O'A'的中点,∴D点纵坐标为:1,∴DE=1,O′E=1,∴D点横坐标为:x==4,∴OO′=1,故答案为1.【点睛】本题考查了反比例函数图象上的性质,正确得出D点坐标是解题关键.17、540【解析】
过正五边形五个顶点,可以画三条对角线,把五边形分成3个三角形∴正五边形的内角和=3180=540°18、﹣4≤m≤﹣1【解析】
先求出直线y=7与直线y=﹣2x﹣1的交点为(﹣4,7),再分类讨论:当点B在点A的右侧,则m≤﹣4≤3m﹣1,当点B在点A的左侧,则3m﹣1≤﹣4≤m,然后分别解关于m的不等式组即可.【详解】解:当y=7时,﹣2x﹣1=7,解得x=﹣4,所以直线y=7与直线y=﹣2x﹣1的交点为(﹣4,7),当点B在点A的右侧,则m≤﹣4≤3m﹣1,无解;当点B在点A的左侧,则3m﹣1≤﹣4≤m,解得﹣4≤m≤﹣1,所以m的取值范围为﹣4≤m≤﹣1,故答案为﹣4≤m≤﹣1.【点睛】本题考查了一次函数图象上点的坐标特征,根据直线y=﹣2x﹣1与线段AB有公共点找出关于m的一元一次不等式组是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、解:(1);(2)存在,P(,);(1)Q点坐标为(0,-)或(0,)或(0,-1)或(0,-1).【解析】
(1)已知点A坐标可确定直线AB的解析式,进一步能求出点B的坐标.点A是抛物线的顶点,那么可以将抛物线的解析式设为顶点式,再代入点B的坐标,依据待定系数法可解.(2)首先由抛物线的解析式求出点C的坐标,在△POB和△POC中,已知的条件是公共边OP,若OB与OC不相等,那么这两个三角形不能构成全等三角形;若OB等于OC,那么还要满足的条件为:∠POC=∠POB,各自去掉一个直角后容易发现,点P正好在第二象限的角平分线上,联立直线y=-x与抛物线的解析式,直接求交点坐标即可,同时还要注意点P在第二象限的限定条件.(1)分别以A、B、Q为直角顶点,分类进行讨论,找出相关的相似三角形,依据对应线段成比例进行求解即可.【详解】解:(1)把A(1,﹣4)代入y=kx﹣6,得k=2,∴y=2x﹣6,令y=0,解得:x=1,∴B的坐标是(1,0).∵A为顶点,∴设抛物线的解析为y=a(x﹣1)2﹣4,把B(1,0)代入得:4a﹣4=0,解得a=1,∴y=(x﹣1)2﹣4=x2﹣2x﹣1.(2)存在.∵OB=OC=1,OP=OP,∴当∠POB=∠POC时,△POB≌△POC,此时PO平分第二象限,即PO的解析式为y=﹣x.设P(m,﹣m),则﹣m=m2﹣2m﹣1,解得m=(m=>0,舍),∴P(,).(1)①如图,当∠Q1AB=90°时,△DAQ1∽△DOB,∴,即=,∴DQ1=,∴OQ1=,即Q1(0,-);②如图,当∠Q2BA=90°时,△BOQ2∽△DOB,∴,即,∴OQ2=,即Q2(0,);③如图,当∠AQ1B=90°时,作AE⊥y轴于E,则△BOQ1∽△Q1EA,∴,即∴OQ12﹣4OQ1+1=0,∴OQ1=1或1,即Q1(0,﹣1),Q4(0,﹣1).综上,Q点坐标为(0,-)或(0,)或(0,﹣1)或(0,﹣1).20、见解析【解析】
利用角平分线的作法以及线段垂直平分线的作法分别得出进而求出其交点即可.【详解】如图所示:P点即为所求.【点睛】本题主要考查了复杂作图,熟练掌握角平分线以及线段垂直平分线的作法是解题的关键.21、见解析【解析】
以DA为边、点D为顶点在△ABC内部作一个角等于∠B,角的另一边与AC的交点即为所求作的点.【详解】解:如图,点E即为所求作的点.【点睛】本题主要考查作图-相似变换,根据相似三角形的判定明确过点D作DE∥BC并熟练掌握做一个角等于已知角的作法式解题的关键.22、(1)300,10;(2)有800人;(3).【解析】试题分析:试题解析:(1)120÷40%=300,a%=1﹣40%﹣30%﹣20%=10%,∴a=10,10%×300=30,图形如下:(2)2000×40%=800(人),答:估计该校选择“跑步”这种活动的学生约有800人;(3)画树状图为:共有12种等可能的结果数,其中每班所抽到的两项方式恰好是“跑步”和“跳绳”的结果数为2,所以每班所抽到的两项方式恰好是“跑步”和“跳绳”的概率=.考点:1.用样本估计总体;2.扇形统计图;3.条形统计图;4.列表法与树状图法.23、5【解析】试题分析:连接OC交AB于D,连接OA,由垂径定理得OD垂直平分AB,设⊙O的半径为r,在△ACD中,利用勾股定理求得CD=2,在△OAD中,由OA2=OD2+AD2,代入相关数量求解即可得.试题解析:连接OC交AB于D,连接OA,由垂径定理得OD垂直平分AB,设⊙O的半径为r,在△ACD中,CD2+AD2=AC2,CD=2,在△OAD中,OA2=OD2+AD2,r2=(r-2)2+16,解得r=5,∴☉O的半径为5.24、(1);(2)当t=1时,矩形ABCD的周长有最大值,最大值为;(3)抛物线向右平移的距离是1个单位.【解析】
(1)由点E的坐标设抛物线的交点式,再把点D的坐标(2,1)代入计算可得;
(2)由抛物线的对称性得BE=OA=t,据此知AB=10-2t,再由x=t时AD=,根据矩形的周长公式列出函数解析式,配方成顶点式即可得;
(3)由t=2得出点A、B、C、D及对角线交点P的坐标,由直线GH平分矩形的面积知直线GH必过点P,根据AB∥CD知线段OD平移后得到的线段是GH,由线段OD的中点Q平移后的对应点是P知PQ是△OBD中位线,据此可得.【详解】(1)设抛物线解析式为,当时,,点的坐标为,将点坐标代入解析式得,解得:,抛物线的函数表达式为;(2)由抛物线的对称性得,,当时,,矩形的周长,,,,当时,矩形的周长有最大值,最大值为;(3)如图,当时,点、、、的坐标分别为、、、,矩形对角线的交点的坐标为,直线平分矩形的面积,点是和的中点,,由平移知,是的中位线,,所以抛物线向右平移的距离是1个单位.【点睛】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、二次函数的性质及平移变换的性质等知识点.25、(1)见解析;(2).【解析】
(1)连接OD,由DH⊥AC,DH是⊙O的切线,然后由平行线的判定与性质可证∠C=∠ODB,由圆周角定理可得∠OBD=∠DEC,进而∠C=∠DEC,可证结论成立;(2)证明△OFD∽△AFE,根据相似三角形的性质即可求出圆的半径.【详解】(1)证明:连接OD,由题意得:DH⊥AC,由且DH是⊙O的切线,∠ODH=∠DHA=90°,∴∠ODH=∠DHA=90°,∴OD∥CA,∴∠C=∠ODB,∵OD=OB,∴∠OBD=∠ODB,∴∠OBD=∠C,∵∠OBD=∠DEC,∴∠C=∠DEC,∴DC=DE;(2)解:由(1)可知:OD∥AC,∴∠ODF=∠AEF,∵∠OFD=∠AFE,∴△OFD∽△AFE,∴,∵AE=1,∴OD=,∴⊙O的半径为.【点睛】本题考查了切线的性质,平行线的判定与性质,等腰三角形的性质与判定,圆周角定理的推论,相似三角形的判定与性质,难度中等,熟练掌握各知识点是解答本题的关键.26、(1)见解析;(2)见解析;(3)1.【解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030年中国鼻贴膜行业规模分析及发展建议研究报告
- 2025-2030年中国高粱酒市场规模分析及投资前景研究报告
- 2025-2030年中国高密度聚乙烯管道市场发展状况及投资策略研究报告
- 2025-2030年中国食品酸度调节剂市场十三五规划及发展策略分析报告
- 2025-2030年中国面膜市场发展现状及投资潜力研究报告
- 2025-2030年中国钢帘线行业运行状况及发展趋势预测报告
- 2025-2030年中国软冰淇淋市场供需现状及投资发展规划研究报告
- 2025年教学楼水电消防系统验收合格合同2篇
- 2025年房产教育抵押合同3篇
- 2025年手机品牌授权销售代理合同3篇
- Unit 2 同步练习人教版2024七年级英语上册
- JGJ94-2008建筑桩基技术规范
- 电子产品模具设计
- (正式版)JBT 11270-2024 立体仓库组合式钢结构货架技术规范
- EPC项目采购阶段质量保证措施
- 失能老年人的护理与康复
- 微信小程序运营投标方案(技术方案)
- 布氏杆菌脊柱炎的护理
- 教育培训行业跨学科教育发展
- 校本课程生活中的化学
- 自我驱动能力培养与提升的方法和技巧
评论
0/150
提交评论