以Dextran-CB作为界面材料来制备高性能钙钛矿电池分析研究 化学工程与工艺专业_第1页
以Dextran-CB作为界面材料来制备高性能钙钛矿电池分析研究 化学工程与工艺专业_第2页
以Dextran-CB作为界面材料来制备高性能钙钛矿电池分析研究 化学工程与工艺专业_第3页
以Dextran-CB作为界面材料来制备高性能钙钛矿电池分析研究 化学工程与工艺专业_第4页
以Dextran-CB作为界面材料来制备高性能钙钛矿电池分析研究 化学工程与工艺专业_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

目录目录 1图表目录 1摘要 2Abstract 2关键词 3Keywords 3前言 4第1章简介 5第1.1节太阳能电池基础 5第1.2节太阳能电池的分类 8第1.3节钙钛矿太阳能电池 9第1.4节界面层 11第2章实验部分 13第2.1节化学药品 13第2.2节Dex-CB-MA的制备 13第2.3节太阳能电池的制备 14第2.4节测试与表征 15第3章结果与分析 16第4章结论 25参考文献 26致谢 33附录 34图表目录TOC\h\z\c"图"图1(a)p型半导体和n型半导体材料的能级;(b)平衡状态下p-n结中电荷移动过程。 7图2钙钛矿材料的晶体结构 10图3(a)正装平面钙钛矿太阳能电池和(b)倒装平面太阳能钙钛矿电池的一般结构 12图4(a)Dex-CB-MA的化学结构式和钙钛矿太阳能电池的器件结构;(b)钙钛矿太阳能电池使用材料的能级示意图 17图5ITO/PEDOT:PSS和ITO/PEDOT:PSS/Dex-CB-MA空穴提取层的透光光谱 19图6(a)PEDOT:PSS(b)1nmDex-CB-MA薄膜(c)2nmDex-CB-MA薄膜(d)5nmDex-CB-MA薄膜的表面AFM顶视图 20图7(A)PEDOT:PSS和(B)PEDOT:PSS/Dex-CB-MA空穴提取层薄膜表面的水的接触角 21图8基于(a)Control,(b)1nm,(c)2nm,(d)5nmDex-CB-MA层的钙钛矿表面的50kX(上)和100kX(下)SEM顶视图 22图9基于不同厚度Dex-CB-MA层的器件的(a)J-V特性曲线和(b)EQE谱图 23图10JSC和VOC的光强依赖性 24图11基于PEDOT:PSS和PEDOT:PSS/Dex-CB-MA空穴提取层的钙钛矿太阳能电池在黑暗条件下的J-V特性曲线 25TOC\h\z\c"表"表1通过不同转速获得的Dex-CB-MA层的粗糙度和厚度 19表2基于不同厚度Dex-CB-MA层器件的具体性能数据 22

摘要太阳能电池是一种可以将太阳能直接转换为电能的装置,在这几十年中已经得到了广泛的关注。人们设法制作不同种类的太阳能电池以实现光伏器件的商业化应用,随着钙钛矿太阳能电池的发明,太阳能电池的成本下降了很多。钙钛矿太阳能电池可以达到很高的转换效率并且可以在常温下通过溶液法很容易地制得。然而,太阳能电池仍然存在着一些问题比如它的不稳定性。为了提高器件的性能,科研人员付出了很多的努力。其中一种有效的方法就是在钙钛矿太阳能电池中引入界面层来改变器件性能。在我的课题中,我用Dex-CB-MA作为界面层材料来达到我增加太阳能电池效率的目的。根据我的研究,Dex-CB-MA可以减少钙钛矿太阳能电池中界面的载流子复合并且能提高钙钛矿材料的结晶,从而获得13.81%的转换效率,相比较于对照组来说,有超过30%的提升。AbstractSolarcells,adeviceconversingsolarenergyintoelectricity,haveattractedlotsofinterestsduringseveraldecades.Differentkindsofsolarcellsweremadetorealizethecommercialapplicationofphotovoltaicdevices.Withtheinventionofperovskitesolarcells,thecostofsolarcellsiscutdowngreatly.Perovskitesolarcellscanachieveahighefficiencyandareeasytofabricatewithsolutionprocessatroomtemperature.However,thereisstillsomeproblemsofperovskitesolarcellssuchasinstability.Greateffortshavebeenmadetoenhancetheperformanceofthesedevices.Oneofeffectivemethodsistointroduceaninterfaciallayerintoperovskitesolarcellstochangesomepropertiesofdevices.Inmyproject,IusedDex-CB-MAasaninterfacialmaterialtoachievemyaimofincreasingtheefficiencyofsolarcells.Accordingtomyresearch,Dex-CB-MAcanreduceinterfacialchargerecombinationinperovskitesolarcellsandimprovethecrystallizationofperovskitematerialsleadingtoa13.81%powerconversionefficiencywhichismorethana30%enhancementcomparedwithcontrolgroups.关键词钙钛矿太阳能电池界面层光伏器件KeywordsPerovskite,Solarcells,Interfaciallayer,Photovoltaicdevices`

前言在对能源需求越来越大的今天,可再生能源在消耗能源总量中的比例越来越大,而其中一种主要的且来源丰富的能源便是太阳能。太阳能电池作为一种能直接将太阳能转换为电能的装置也已获得越来越大的关注,尽管晶体硅太阳能电池已经实现商业化,但还是存在很多问题,比如在生产过程中仍需消耗大量能源且废弃的硅电池很难处理,这些问题违背了使用太阳能电池的初衷。因此,对于新型太阳能电池的研究也是目前的热点之一,符合建设环境友好型社会的要求。自从钙钛矿材料被发现之后,其优秀的性能使其可能成为太阳能电池合适的吸光材料,我们的研究方面就是通过使用不同材料和结构进一步完善钙钛矿太阳能电池各方面的性能。

第1章简介第1.1节太阳能电池基础太阳能电池是一种可以直接且稳定地将太阳能转换成电能的装置,其工作过程可以被分为三个主要部分:电荷产生,电荷分离和电荷传输。当半导体材料吸收光子后,电子会从低能量状态被激发到高能量状态并在其之前的位置上留下所谓的空穴从而形成了电子-空穴对,也被称为激子。当暴露在太阳底下时,半导体材料的性质对于电荷产生有决定性的作用。半导体材料的带隙越大,产生的载流子所具有的的能量也就越大,电池可能的开路电压也就越高。然而,转化成激子的光子数量则会减少,因为光子的能力若低于带隙则无法被吸收,导致了电池的光电流降低。另一方面,带隙越小,材料能吸收的光子就越多从而获得更大的光电流。但是被激发的电子中超过带隙的能量会以热能的形式消耗,从而使被激发的电子能量等同于带隙能量。所以当我们要获得一个有良好性能的太阳能电池时,需要考虑使用某种具有合适带隙的半导体材料。当然,制作器件时也需要考虑其他因素比如太阳光谱范围ADDINCSL_CITATION{"citationItems":[{"id":"ITEM-1","itemData":{"author":[{"dropping-particle":"","family":"Nelson","given":"J.Vells","non-dropping-particle":"","parse-names":false,"suffix":""}],"id":"ITEM-1","issued":{"date-parts":[["2003"]]},"publisher":"ImperialCollegePress:London","title":"ThePhysicsofSolarCells","type":"book"},"uris":["/documents/?uuid=ec1084f4-effc-418f-8580-13223a9be9f2"]}],"mendeley":{"formattedCitation":"<sup>[1]</sup>","plainTextFormattedCitation":"[1]","previouslyFormattedCitation":"<sup>[1]</sup>"},"properties":{"noteIndex":0},"schema":"/citation-style-language/schema/raw/master/csl-citation.json"}[1]。图SEQ图\*ARABIC1(a)p型半导体和n型半导体材料的能级;(b)平衡状态下p-n结中电荷移动过程。在电荷产生之后,形成的激子需要在他们复合释放出能量之前被分离。复合会以不同的形式发生。第一种复合叫做辐射复合,这是自发发光的结果,会重新产生光子。第二种复合形式叫做俄歇复合。在这个过程中,一个被激发的载流子会将它的能量释放给另一个被激发的载流子因为他们之间有某种作用。这导致前一个载流子能量减少从而低于带隙而另一个载流子动能增加,其过剩的能量仍以热能的形式耗散。最后一种形式是通过在由于半导体材料内部的杂质和缺陷形成的陷阱态中发生松弛而复合。前两种复合的产生是基本的物理过程,而最后一种形式的复合主要是因为材料的缺陷,这一点是由半导体材料的质量所决定的。几种不同性能材料之间的连结可以用来分离电子和空穴。常见的连结有:半导体-金属结,p-n结,p-i-n结等等。太阳能电池中应用最广泛的结构是-p-n结包括p-n单质结(相同材料的p型半导体和n型半导体)和p-n异质结(两种不同材料的通过相反掺杂形成的半导体)。当两种半导体材料接触时,由于电子浓度梯度的存在,电子从n型半导体材料扩散到p型半导体材料,空穴则从p型半导体向n型半导体移动。由于电荷移动,p型半导体在靠近连结处形成负电荷区域而n型半导体在靠近连结处形成正电荷区域,这个区域被称为耗尽区。由于上述过程,在连结处产生了一个从n型半导体指向p型半导体材料的电场。受该电场的作用,正电荷向p型半导体漂移而负电荷向n型半导体漂移。光致电子被迫向n型材料移动而空穴则向p型材料移动,两种电荷分别逐渐变为主要载流子。图1是p-n结的示意图,其中Evac是真空能级,Ec是导带能级,Ev是价带能级,EF是费米能级,χC是电子亲和能级,φp和φn是p型和n型半导体的逸出功。当加入一层本征半导体(未掺杂的半导体材料)后,p-n结就变为p-i-n结。p-i-n结中电子移动过程除了耗尽区和电场变得更宽,其余都和p-n结一样。p-i-n结的好处在于使基于少数载流子漂移长度较短材料的电池可以有更好的性能。延长的耗尽区也可以收集更多电荷从而获得更大的光电流。然而,由于本征半导体的导电性比p型和n型半导体材料低,器件的串联电阻将增加。电荷分离之后,需要被传输穿过半导体材料,这个过程也会被电荷复合所影响。一个半导体材料吸收光子后产生的少数载流子需要到达连结处并在和异种电荷发生重合之前运动至另一个半导体材料中形成主要载流子。少数载流子的漂移距离是一个衡量少数载流子在与主要载流子发生复合之前所能移动的距离多少的参数,这个参数是制作太阳能电池时需要着重考虑的一个因素。因此吸光材料的厚度不能太大,因为厚度越大,则可能能够被传输的载流子数量也就越小。为了解决电荷传输问题,可以采用一些特殊结构比如体异质结来减少少数载流子所需要移动的距离。当施加外部回路后,光电流可以从回路中通过并提供电能。电荷产生和传输对于太阳能电池的性能非常重要,所以在制作器件时首先要考虑两种不同半导体之间的连结方式。第1.2节太阳能电池的分类根据使用的吸光材料不同,一般认为有三代太阳能电池ADDINCSL_CITATION{"citationItems":[{"id":"ITEM-1","itemData":{"DOI":"10.1002/ente.201300057","ISBN":"21944288","ISSN":"21944296","abstract":"It'safree-for-all!ITO-freeorganicphotovoltaicsarefabricatedusingroll-to-rollprocessingtechnologyandlasercuttingtoseparateandencapsulateindividualmodules.Themodulesarethenmadeavailablefree-of-chargefromtheauthor\u2032swebsite(inaneffortnamed\u201cfreeOPV\u201d)tocreateaplatformfromwhichtheprocessingtechnologycanbeevaluatedusinginformationsharedbyresearchersallovertheworld.","author":[{"dropping-particle":"","family":"Krebs","given":"FrederikC.","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"H\u00f6sel","given":"Markus","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Corazza","given":"Michael","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Roth","given":"B\u00e9renger","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"V.","family":"Madsen","given":"Morten","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Gevorgyan","given":"SurenA.","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"S\u00f8ndergaard","given":"RoarR.","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Karg","given":"Dieter","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"J\u00f8rgensen","given":"Mikkel","non-dropping-particle":"","parse-names":false,"suffix":""}],"container-title":"EnergyTechnology","id":"ITEM-1","issue":"7","issued":{"date-parts":[["2013"]]},"page":"378-381","title":"FreelyavailableOPV\u2014Thefastwaytoprogress","type":"article-journal","volume":"1"},"uris":["/documents/?uuid=a64f520e-d462-4d3a-866f-4f86b60e9110"]}],"mendeley":{"formattedCitation":"<sup>[2]</sup>","plainTextFormattedCitation":"[2]","previouslyFormattedCitation":"<sup>[2]</sup>"},"properties":{"noteIndex":0},"schema":"/citation-style-language/schema/raw/master/csl-citation.json"}[2]。第一代太阳能电池也被称为传统太阳能电池使用晶体硅作为吸光材料,其光电转换效率目前能达到17%-23%ADDINCSL_CITATION{"citationItems":[{"id":"ITEM-1","itemData":{"DOI":"10.1038/nature12557","ISBN":"0028-0836","ISSN":"00280836","PMID":"24025766","abstract":"Areview.Theultimategoalofthesolarcellindustryistomakeinexpensivedevicesthatarehighlyefficientatconvertingsunlightintoelectricity.Theadventofperovskitesemiconductorscouldbethekeytoreachingthisgoal.[onSciFinder(R)]","author":[{"dropping-particle":"","family":"McGehee","given":"MichaelD.","non-dropping-particle":"","parse-names":false,"suffix":""}],"container-title":"Nature","id":"ITEM-1","issue":"7467","issued":{"date-parts":[["2013"]]},"page":"323-325","title":"Materialsscience:Fast-tracksolarcells","type":"article-journal","volume":"501"},"uris":["/documents/?uuid=15f7545d-c377-4d3b-a58d-c9a322d854b1"]}],"mendeley":{"formattedCitation":"<sup>[3]</sup>","plainTextFormattedCitation":"[3]","previouslyFormattedCitation":"<sup>[3]</sup>"},"properties":{"noteIndex":0},"schema":"/citation-style-language/schema/raw/master/csl-citation.json"}[3]。第二代太阳能电池为薄膜电池,包括非晶硅(a-Si),碲化镉(CdTe)和铜铟镓硒化合物(CIGS)。有机或者有机-无机杂化太阳能电池,量子点太阳能电池和染料敏化电池则常被称为第三代太阳能电池或者新兴光伏电池。第三代电池性能提升迅速,有很大的学术和商业价值,已成为研究热点ADDINCSL_CITATION{"citationItems":[{"id":"ITEM-1","itemData":{"DOI":"10.1557/JMR.2004.0252","ISBN":"9780300071429","ISSN":"08842914","PMID":"20082418","abstract":"Organicsolarcellresearchhasdevelopedduringthepast30years,butespeciallyinthelastdecadeithasattractedscientificandeconomicinteresttriggeredbyarapidincreaseinpowerconversionefficiencies.Thiswasachievedbytheintroductionofnewmaterials,improvedmaterialsengineering,andmoresophisticateddevicestructures.Today,solarpowerconversionefficienciesinexcessof3%havebeenaccomplishedwithseveraldeviceconcepts.Thoughefficienciesofthesethin-filmorganicdeviceshavenotyetreachedthoseoftheirinorganiccounterparts(\u03b7\u224810\u201320%);theperspectiveofcheapproduction(employing,e.g.,roll-to-rollprocesses)drivesthedevelopmentoforganicphotovoltaicdevicesfurtherinadynamicway.Thetwocompetitiveproductiontechniquesusedtodayareeitherwetsolutionprocessingordrythermalevaporationoftheorganicconstituents.Thefieldoforganicsolarcellsprofitedwellfromthedevelopmentoflight-emittingdiodesbasedonsimilartechnologies,whichhaveenteredthemarketrecently.Wereviewherethecurrentstatusofthefieldoforganicsolarcellsanddiscussdifferentproductiontechnologiesaswellasstudytheimportantparameterstoimprovetheirperformance.","author":[{"dropping-particle":"","family":"Hoppe","given":"Harald","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Sariciftci","given":"NiyaziSerdar","non-dropping-particle":"","parse-names":false,"suffix":""}],"container-title":"JournalofMaterialsResearch","id":"ITEM-1","issue":"7","issued":{"date-parts":[["2004"]]},"page":"1924-1945","title":"Organicsolarcells:Anoverview","type":"article-journal","volume":"19"},"uris":["/documents/?uuid=0e204e23-3070-4fde-9afc-70ffcf170e39"]},{"id":"ITEM-2","itemData":{"DOI":"10.3390/en3030313","ISBN":"1996-1073","ISSN":"19961073","abstract":"Wepresentareviewoftheemergingclassofhybridsolarcellsbasedonorganic-semiconductor(GroupIV,III-V),nanocomposites,whichstatesseparatelyfromdyesynthesized,polymer-metaloxidesandorganic-inorganic(GroupII-VI)nanocompositephotovoltaics.Thestructureofsuchhybridcellcomprisesofanorganicactivematerial(p-type)depositedbycoating,printingorsprayingtechniqueonthesurfaceofbulkornanostructuredsemiconductor(n-type)formingaheterojunctionbetweenthetwomaterials.Organiccomponentsincludevariousphotosensitivemonomers(e.g.,phtalocyaninesorporphyrines),conjugatedpolymers,andcarbonnanotubes.Mechanismsofthechargeseparationattheinterfaceandtheirtransportarediscussed.Also,perspectivesonthefuturedevelopmentofsuchhybridcellsandcomparativeanalysiswithotherclassesofphotovoltaicsofthirdgenerationarepresented.","author":[{"dropping-particle":"","family":"Ong","given":"PangLeen","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Levitsky","given":"IgorA.","non-dropping-particle":"","parse-names":false,"suffix":""}],"container-title":"Energies","id":"ITEM-2","issue":"3","issued":{"date-parts":[["2010"]]},"page":"313-334","title":"Organic/IV,III-Vsemiconductorhybridsolarcells","type":"article-journal","volume":"3"},"uris":["/documents/?uuid=12989371-e015-4cc6-8510-b6e01ce8b102"]}],"mendeley":{"formattedCitation":"<sup>[4,5]</sup>","plainTextFormattedCitation":"[4,5]","previouslyFormattedCitation":"<sup>[4,5]</sup>"},"properties":{"noteIndex":0},"schema":"/citation-style-language/schema/raw/master/csl-citation.json"}[4,5]。目前,晶体硅电池占据了大部分光伏市场ADDINCSL_CITATION{"citationItems":[{"id":"ITEM-1","itemData":{"DOI":"10.1039/c2ee03489a","ISBN":"1754-5692","ISSN":"1754-5692","abstract":"Crystallinesilicon(c-Si)photovoltaicsarerobust,manufacturable,andEarth-abundant.However,barriersexistforc-SimodulestoreachUS$0.50\u20130.75/Wpfabricationcostsnecessaryforsubsidy-freeutility-scaleadoption.Weevaluatethepotentialofc-Siphotovoltaicstoreachthisgoalbydevelopingabottom-upcostmodelforc-Siwafer,cell,andmodulemanufacturing;performingasensitivityanalysistodetermineresearchdomainsthatprovidethegreatestimpactoncost;andevaluatingthecost-reductionpotentialofline-of-sightmanufacturinginnovationandscale,aswellasadvancedtechnologyinnovation.Weidentifyresearchdomainswithlargecostreductionpotential,includingimprovingefficiencies,improvingsiliconutilization,andstreamliningmanufacturingprocessesandequipment,andbrieflyreviewongoingresearchanddevelopmentactivitiesthatimpacttheseresearchdomains.WeconcludethatmultipletechnologypathwaysexisttoenableUS$0.50/WpmodulemanufacturingintheUnitedStateswithsiliconabsorbers.Morebroadly,thisworkpresentsauser-targetedresearchanddevelopmentframeworkthatprioritizesresearchneedsbasedonmarketimpact.","author":[{"dropping-particle":"","family":"Powell","given":"D.M.","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Winkler","given":"M.T.","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Choi","given":"H.J.","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Simmons","given":"C.B.","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Needleman","given":"D.Berney","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Buonassisi","given":"T.","non-dropping-particle":"","parse-names":false,"suffix":""}],"container-title":"Energy&EnvironmentalScience","id":"ITEM-1","issue":"3","issued":{"date-parts":[["2012"]]},"page":"5874","title":"Crystallinesiliconphotovoltaics:acostanalysisframeworkfordeterminingtechnologypathwaystoreachbaseloadelectricitycosts","type":"article-journal","volume":"5"},"uris":["/documents/?uuid=09d825c2-8edd-4e36-b0d4-737523d180f6"]}],"mendeley":{"formattedCitation":"<sup>[6]</sup>","plainTextFormattedCitation":"[6]","previouslyFormattedCitation":"<sup>[6]</sup>"},"properties":{"noteIndex":0},"schema":"/citation-style-language/schema/raw/master/csl-citation.json"}[6],但由于其配套设施成本很难降低并且成本回报周期很长,硅电池发展空间有限ADDINCSL_CITATION{"citationItems":[{"id":"ITEM-1","itemData":{"DOI":"10.1002/advs.201500324","ISBN":"21983844","ISSN":"21983844","PMID":"319","abstract":"Organoleadhalideperovskitematerialspossessacombinationofremarkableoptoelectronicproperties,suchassteepopticalabsorptionedgeandhighabsorptioncoefficients,longchargecarrierdiffusionlengthsandlifetimes.Takentogetherwiththeabilityforlowtemperaturepreparation,alsofromsolution,perovskite-baseddevices,especiallyphotovoltaic(PV)cellshavebeenstudiedintensively,withremarkableprogressinperformance,overthepastfewyears.Thecombinationofhighefficiency,lowcostandadditional(non-PV)applicationsprovidesgreatpotentialforcommercialization.Performanceandapplicationsofperovskitesolarcellsoftencorrelatewiththeirdevicestructures.Manyinnovativedevicestructuresweredeveloped,aimingatlarge-scalefabrication,reducingfabricationcost,enhancingthepowerconversionefficiencyandthusbroadeningpotentialfutureapplications.Thisreviewsummarizestypicalstructuresofperovskitesolarcellsandcommentsonnoveldevicestructures.Theapplicationsofperovskitesolarcellsarediscussed.","author":[{"dropping-particle":"","family":"Zuo","given":"Chuantian","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Bolink","given":"HenkJ.","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Han","given":"Hongwei","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Huang","given":"Jinsong","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Cahen","given":"David","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Ding","given":"Liming","non-dropping-particle":"","parse-names":false,"suffix":""}],"container-title":"AdvancedScience","id":"ITEM-1","issue":"7","issued":{"date-parts":[["2016"]]},"page":"1-16","title":"Advancesinperovskitesolarcells","type":"article-journal","volume":"3"},"uris":["/documents/?uuid=be096c1e-7173-4d34-874b-4a07f980fb5f"]},{"id":"ITEM-2","itemData":{"DOI":"10.1021/es8019534","ISBN":"5106421640","ISSN":"0013936X","PMID":"19368216","abstract":"Solarphotovoltaicshavegreatpromiseforalow-carbonfuturebutremainexpensiverelativetoothertechnologies.Greatlyincreasedpenetrationofphotovoltaicsintoglobalenergymarketsrequiresanexpansioninattentionfromdesignsofhigh-performancetothosethatcandeliversignificantlylowercostperkilowatt-hour.Toevaluateanewsetoftechnicalandeconomicperformancetargets,weexaminematerialextractioncostsandsupplyconstraintsfor23promisingsemiconductingmaterials.Twelvecompositematerialssystemswerefoundtohavethecapacitytomeetorexceedtheannualworldwideelectricityconsumptionof17,000TWh,ofwhichninehavethepotentialforasignificantcostreductionovercrystallinesilicon.Weidentifyalargematerialextractioncost(cents/watt)gapbetweenleadingthinfilmmaterialsandanumberofunconventionalsolarcellcandidatesincludingFeS2,CuO,andZn3P2.Wefindthatdevicesperformingbelow10%powerconversionefficienciesdeliverthesamelifetimeenergyoutputasthoseabove20%whena3/4materialreductionisachieved.Here,wedeveloparoadmapemphasizinglow-costalternativesthatcouldbecomeadominantnewapproachforphotovoltaicsresearchanddeployment.","author":[{"dropping-particle":"","family":"Wadia","given":"Cyrus","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Alivisatos","given":"A.Paul","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Kammen","given":"DanielM.","non-dropping-particle":"","parse-names":false,"suffix":""}],"container-title":"EnvironmentalScienceandTechnology","id":"ITEM-2","issue":"6","issued":{"date-parts":[["2009"]]},"page":"2072-2077","title":"Materialsavailabilityexpandstheopportunityforlarge-scalephotovoltaicsdeployment","type":"article-journal","volume":"43"},"uris":["/documents/?uuid=73638536-1a1b-4c35-a897-59042b1bc0dc"]}],"mendeley":{"formattedCitation":"<sup>[7,8]</sup>","plainTextFormattedCitation":"[7,8]","previouslyFormattedCitation":"<sup>[7,8]</sup>"},"properties":{"noteIndex":0},"schema":"/citation-style-language/schema/raw/master/csl-citation.json"}[7,8]。相比于传统硅太阳能电池,有机或有机-无机杂化太阳能电池可以通过溶液法更加简单地制备,因此生产成本大大降低且可以制作柔性器件。有机太阳能电池,即使用具有相对较强的吸光效率但载流子移动性较低的有机半导体比如有机小分子和共轭高分子ADDINCSL_CITATION{"citationItems":[{"id":"ITEM-1","itemData":{"author":[{"dropping-particle":"","family":"Brabec,C.,Scherf,U.,Dyakonov,V.","given":"Eds.","non-dropping-particle":"","parse-names":false,"suffix":""}],"id":"ITEM-1","issued":{"date-parts":[["2008"]]},"publisher":"Wiley-VCH","publisher-place":"NewYork","title":"OrganicPhotovoltaics:Materials,DevicePhysics,andManufacturingTechnologies","type":"book"},"uris":["/documents/?uuid=a1295ef5-315a-4cf9-9a19-849521636b49"]},{"id":"ITEM-2","itemData":{"author":[{"dropping-particle":"","family":"Gunes,S.;Neugebauer,H.;Sariciftci","given":"N.S.","non-dropping-particle":"","parse-names":false,"suffix":""}],"container-title":"Chem.Rev.","id":"ITEM-2","issued":{"date-parts":[["2007"]]},"page":"1324-1338","title":"Conjugatedpolymer-basedorganicsolarcells","type":"article-journal","volume":"107"},"uris":["/documents/?uuid=5aa7344a-c299-4122-8313-b2ce3f738745"]},{"id":"ITEM-3","itemData":{"author":[{"dropping-particle":"","family":"Bredas,J.L.;Norton,J.E.;Cornil,J.;Coropceanu","given":"V.","non-dropping-particle":"","parse-names":false,"suffix":""}],"container-title":"Acc.Chem.Res.","id":"ITEM-3","issued":{"date-parts":[["2009"]]},"page":"1691-1699","title":"Molecularunderstandingoforganicsolarcells:Thechallenges.","type":"article-journal","volume":"42"},"uris":["/documents/?uuid=5eeb0b2c-0eb7-45c7-948f-e4c34578f20a"]}],"mendeley":{"formattedCitation":"<sup>[9\u201311]</sup>","plainTextFormattedCitation":"[9\u201311]","previouslyFormattedCitation":"<sup>[9\u201311]</sup>"},"properties":{"noteIndex":0},"schema":"/citation-style-language/schema/raw/master/csl-citation.json"}[9–11]作为吸光材料的器件,已达到13%的光电转换效率ADDINCSL_CITATION{"citationItems":[{"id":"ITEM-1","itemData":{"DOI":"10.1021/jacs.7b02677","ISBN":"0002-7863","ISSN":"15205126","PMID":"28513158","abstract":"Anewpolymerdonor(PBDB-T-SF)andanewsmallmoleculeacceptor(IT-4F)forfullerene-freeorganicsolarcells(OSCs)weredesignedandsynthesized.Theinfluencesoffluorinationontheabsorptionspectra,molecularenergylevels,andchargemobilitiesofthedonorandacceptorweresystematicallystudied.ThePBDB-T-SF:IT-4F-basedOSCdeviceshowedarecordhighefficiencyof13.1%,andanefficiencyofover12%canbeobtainedwithathicknessof100\u2013200nm,suggestingthepromiseoffullerene-freeOSCsinpracticalapplications.","author":[{"dropping-particle":"","family":"Zhao","given":"Wenchao","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Li","given":"Sunsun","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Yao","given":"Huifeng","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Zhang","given":"Shaoqing","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Zhang","given":"Yun","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Yang","given":"Bei","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Hou","given":"Jianhui","non-dropping-particle":"","parse-names":false,"suffix":""}],"container-title":"JournaloftheAmericanChemicalSociety","id":"ITEM-1","issue":"21","issued":{"date-parts":[["2017"]]},"page":"7148-7151","title":"MolecularOptimizationEnablesover13%EfficiencyinOrganicSolarCells","type":"article-journal","volume":"139"},"uris":["/documents/?uuid=10807402-35ad-4aa9-944a-7a5626491129"]}],"mendeley":{"formattedCitation":"<sup>[12]</sup>","plainTextFormattedCitation":"[12]","previouslyFormattedCitation":"<sup>[12]</sup>"},"properties":{"noteIndex":0},"schema":"/citation-style-language/schema/raw/master/csl-citation.json"}[12],该效率比起其他种类的太阳能电池来说很低。由于在有机半导体中激子漂移长度很短,溶液法制备有机太阳能电池中多使用体异质结结构,这种结构于1995年被首次报道ADDINCSL_CITATION{"citationItems":[{"id":"ITEM-1","itemData":{"author":[{"dropping-particle":"","family":"Yu,G.;Gao,J.;Hummelen,J.C.;Wudl,F.;Heeger","given":"A.J.","non-dropping-particle":"","parse-names":false,"suffix":""}],"container-title":"Science","id":"ITEM-1","issued":{"date-parts":[["1995"]]},"page":"1789-1791","title":"PolymerPhotovoltaicCells:EnhancedEfficienciesviaaNetworkofInternalDonor-AcceptorHeterojunctions","type":"article-journal","volume":"270"},"uris":["/documents/?uuid=c9f6d3cb-03ef-4e55-9374-01ae3274e452"]},{"id":"ITEM-2","itemData":{"author":[{"dropping-particle":"","family":"Dennler,G.;Scharber,M.C.;Brabec","given":"C.J.","non-dropping-particle":"","parse-names":false,"suffix":""}],"container-title":"Adv.Mater.","id":"ITEM-2","issued":{"date-parts":[["2009"]]},"page":"1323-1338","title":"Polymer-FullereneBulk-HeterojunctionSolarCells","type":"article-journal","volume":"21"},"uris":["/documents/?uuid=12577dae-6338-453b-80da-7323521770f6"]}],"mendeley":{"formattedCitation":"<sup>[13,14]</sup>","plainTextFormattedCitation":"[13,14]","previouslyFormattedCitation":"<sup>[13,14]</sup>"},"properties":{"noteIndex":0},"schema":"/citation-style-language/schema/raw/master/csl-citation.json"}[13,14]。至于薄膜电池和染料敏化电池,他们的效率可以分别达到19.6%和超过13.00%ADDINCSL_CITATION{"citationItems":[{"id":"ITEM-1","itemData":{"DOI":"10.1039/c3ee41888j","ISBN":"1754-5692","ISSN":"1754-5692","abstract":"Thecarbo

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论