北京市昌平区市级名校2024年高考数学倒计时模拟卷含解析_第1页
北京市昌平区市级名校2024年高考数学倒计时模拟卷含解析_第2页
北京市昌平区市级名校2024年高考数学倒计时模拟卷含解析_第3页
北京市昌平区市级名校2024年高考数学倒计时模拟卷含解析_第4页
北京市昌平区市级名校2024年高考数学倒计时模拟卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市昌平区市级名校2024年高考数学倒计时模拟卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知定义在R上的偶函数满足,当时,,函数(),则函数与函数的图象的所有交点的横坐标之和为()A.2 B.4 C.5 D.62.正四棱锥的五个顶点在同一个球面上,它的底面边长为,侧棱长为,则它的外接球的表面积为()A. B. C. D.3.某工厂只生产口罩、抽纸和棉签,如图是该工厂年至年各产量的百分比堆积图(例如:年该工厂口罩、抽纸、棉签产量分别占、、),根据该图,以下结论一定正确的是()A.年该工厂的棉签产量最少B.这三年中每年抽纸的产量相差不明显C.三年累计下来产量最多的是口罩D.口罩的产量逐年增加4.对于正在培育的一颗种子,它可能1天后发芽,也可能2天后发芽,….下表是20颗不同种子发芽前所需培育的天数统计表,则这组种子发芽所需培育的天数的中位数是()发芽所需天数1234567种子数43352210A.2 B.3 C.3.5 D.45.设,集合,则()A. B. C. D.6.函数的图象可能是()A. B. C. D.7.函数,,则“的图象关于轴对称”是“是奇函数”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.若,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件9.已知,,,是球的球面上四个不同的点,若,且平面平面,则球的表面积为()A. B. C. D.10.某四棱锥的三视图如图所示,则该四棱锥的表面积为()A.8 B. C. D.11.设函数在定义城内可导,的图象如图所示,则导函数的图象可能为()A. B.C. D.12.2019年某校迎国庆70周年歌咏比赛中,甲乙两个合唱队每场比赛得分的茎叶图如图所示(以十位数字为茎,个位数字为叶).若甲队得分的中位数是86,乙队得分的平均数是88,则()A.170 B.10 C.172 D.12二、填空题:本题共4小题,每小题5分,共20分。13.某大学、、、四个不同的专业人数占本校总人数的比例依次为、、、,现欲采用分层抽样的方法从这四个专业的总人数中抽取人调查毕业后的就业情况,则专业应抽取_________人.14.已知不等式的解集不是空集,则实数的取值范围是;若不等式对任意实数恒成立,则实数的取值范围是___15.学校艺术节对同一类的四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:甲说:“作品获得一等奖”;乙说:“作品获得一等奖”;丙说:“,两项作品未获得一等奖”;丁说:“是或作品获得一等奖”,若这四位同学中只有两位说的话是对的,则获得一等奖的作品是___.16.已知实数,满足约束条件,则的最大值是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,其导函数为,(1)若,求不等式的解集;(2)证明:对任意的,恒有.18.(12分)一张边长为的正方形薄铝板(图甲),点,分别在,上,且(单位:).现将该薄铝板沿裁开,再将沿折叠,沿折叠,使,重合,且重合于点,制作成一个无盖的三棱锥形容器(图乙),记该容器的容积为(单位:),(注:薄铝板的厚度忽略不计)(1)若裁开的三角形薄铝板恰好是该容器的盖,求,的值;(2)试确定的值,使得无盖三棱锥容器的容积最大.19.(12分)已知,,动点满足直线与直线的斜率之积为,设点的轨迹为曲线.(1)求曲线的方程;(2)若过点的直线与曲线交于,两点,过点且与直线垂直的直线与相交于点,求的最小值及此时直线的方程.20.(12分)在平面直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.(Ⅰ)求直线的直角坐标方程与曲线的普通方程;(Ⅱ)已知点设直线与曲线相交于两点,求的值.21.(12分)某商场为改进服务质量,随机抽取了200名进场购物的顾客进行问卷调查.调查后,就顾客“购物体验”的满意度统计如下:满意不满意男4040女8040(1)是否有97.5%的把握认为顾客购物体验的满意度与性别有关?(2)为答谢顾客,该商场对某款价格为100元/件的商品开展促销活动.据统计,在此期间顾客购买该商品的支付情况如下:支付方式现金支付购物卡支付APP支付频率10%30%60%优惠方式按9折支付按8折支付其中有1/3的顾客按4折支付,1/2的顾客按6折支付,1/6的顾客按8折支付将上述频率作为相应事件发生的概率,记某顾客购买一件该促销商品所支付的金额为,求的分布列和数学期望.附表及公式:.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82822.(10分)如图所示,三棱柱中,平面,点,分别在线段,上,且,,是线段的中点.(Ⅰ)求证:平面;(Ⅱ)若,,,求直线与平面所成角的正弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

由函数的性质可得:的图像关于直线对称且关于轴对称,函数()的图像也关于对称,由函数图像的作法可知两个图像有四个交点,且两两关于直线对称,则与的图像所有交点的横坐标之和为4得解.【详解】由偶函数满足,可得的图像关于直线对称且关于轴对称,函数()的图像也关于对称,函数的图像与函数()的图像的位置关系如图所示,可知两个图像有四个交点,且两两关于直线对称,则与的图像所有交点的横坐标之和为4.故选:B【点睛】本题主要考查了函数的性质,考查了数形结合的思想,掌握函数的性质是解题的关键,属于中档题.2、C【解析】

如图所示,在平面的投影为正方形的中心,故球心在上,计算长度,设球半径为,则,解得,得到答案.【详解】如图所示:在平面的投影为正方形的中心,故球心在上,,故,,设球半径为,则,解得,故.故选:.【点睛】本题考查了四棱锥的外接球问题,意在考查学生的空间想象能力和计算能力.3、C【解析】

根据该厂每年产量未知可判断A、B、D选项的正误,根据每年口罩在该厂的产量中所占的比重最大可判断C选项的正误.综合可得出结论.【详解】由于该工厂年至年的产量未知,所以,从年至年棉签产量、抽纸产量以及口罩产量的变化无法比较,故A、B、D选项错误;由堆积图可知,从年至年,该工厂生产的口罩占该工厂的总产量的比重是最大的,则三年累计下来产量最多的是口罩,C选项正确.故选:C.【点睛】本题考查堆积图的应用,考查数据处理能力,属于基础题.4、C【解析】

根据表中数据,即可容易求得中位数.【详解】由图表可知,种子发芽天数的中位数为,故选:C.【点睛】本题考查中位数的计算,属基础题.5、B【解析】

先化简集合A,再求.【详解】由得:,所以,因此,故答案为B【点睛】本题主要考查集合的化简和运算,意在考查学生对这些知识的掌握水平和计算推理能力.6、A【解析】

先判断函数的奇偶性,以及该函数在区间上的函数值符号,结合排除法可得出正确选项.【详解】函数的定义域为,,该函数为偶函数,排除B、D选项;当时,,排除C选项.故选:A.【点睛】本题考查根据函数的解析式辨别函数的图象,一般分析函数的定义域、奇偶性、单调性、零点以及函数值符号,结合排除法得出结果,考查分析问题和解决问题的能力,属于中等题.7、B【解析】

根据函数奇偶性的性质,结合充分条件和必要条件的定义进行判断即可.【详解】设,若函数是上的奇函数,则,所以,函数的图象关于轴对称.所以,“是奇函数”“的图象关于轴对称”;若函数是上的偶函数,则,所以,函数的图象关于轴对称.所以,“的图象关于轴对称”“是奇函数”.因此,“的图象关于轴对称”是“是奇函数”的必要不充分条件.故选:B.【点睛】本题主要考查充分条件和必要条件的判断,结合函数奇偶性的性质判断是解决本题的关键,考查推理能力,属于中等题.8、A【解析】

本题根据基本不等式,结合选项,判断得出充分性成立,利用“特殊值法”,通过特取的值,推出矛盾,确定必要性不成立.题目有一定难度,注重重要知识、基础知识、逻辑推理能力的考查.【详解】当时,,则当时,有,解得,充分性成立;当时,满足,但此时,必要性不成立,综上所述,“”是“”的充分不必要条件.【点睛】易出现的错误有,一是基本不等式掌握不熟,导致判断失误;二是不能灵活的应用“赋值法”,通过特取的值,从假设情况下推出合理结果或矛盾结果.9、A【解析】

由题意画出图形,求出多面体外接球的半径,代入表面积公式得答案.【详解】如图,取BC中点G,连接AG,DG,则,,分别取与的外心E,F,分别过E,F作平面ABC与平面DBC的垂线,相交于O,则O为四面体的球心,由,得正方形OEGF的边长为,则,四面体的外接球的半径,球O的表面积为.故选A.【点睛】本题考查多面体外接球表面积的求法,考查空间想象能力与思维能力,是中档题.10、D【解析】

根据三视图还原几何体为四棱锥,即可求出几何体的表面积.【详解】由三视图知几何体是四棱锥,如图,且四棱锥的一条侧棱与底面垂直,四棱锥的底面是正方形,边长为2,棱锥的高为2,所以,故选:【点睛】本题主要考查了由三视图还原几何体,棱锥表面积的计算,考查了学生的运算能力,属于中档题.11、D【解析】

根据的图象可得的单调性,从而得到在相应范围上的符号和极值点,据此可判断的图象.【详解】由的图象可知,在上为增函数,且在上存在正数,使得在上为增函数,在为减函数,故在有两个不同的零点,且在这两个零点的附近,有变化,故排除A,B.由在上为增函数可得在上恒成立,故排除C.故选:D.【点睛】本题考查导函数图象的识别,此类问题应根据原函数的单调性来考虑导函数的符号与零点情况,本题属于基础题.12、D【解析】

中位数指一串数据按从小(大)到大(小)排列后,处在最中间的那个数,平均数指一串数据的算术平均数.【详解】由茎叶图知,甲的中位数为,故;乙的平均数为,解得,所以.故选:D.【点睛】本题考查茎叶图的应用,涉及到中位数、平均数的知识,是一道容易题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

求出专业人数在、、、四个专业总人数的比例后可得.【详解】由题意、、、四个不同的专业人数的比例为,故专业应抽取的人数为.故答案为:1.【点睛】本题考查分层抽样,根据分层抽样的定义,在各层抽取样本数量是按比例抽取的.14、【解析】

利用绝对值的几何意义,确定出的最小值,然后根据题意即可得到的取值范围化简不等式,求出的最大值,然后求出结果【详解】的最小值为,则要使不等式的解集不是空集,则有化简不等式有,即而当时满足题意,解得或所以答案为【点睛】本题主要考查的是函数恒成立的问题和绝对值不等式,要注意到绝对值的几何意义,数形结合来解答本题,注意去绝对值时的分类讨论化简15、C【解析】

假设获得一等奖的作品,判断四位同学说对的人数.【详解】分别获奖的说对人数如下表:获奖作品ABCD甲对错错错乙错错对错丙对错对错丁对错错对说对人数3021故获得一等奖的作品是C.【点睛】本题考查逻辑推理,常用方法有:1、直接推理结果,2、假设结果检验条件.16、【解析】

令,所求问题的最大值为,只需求出即可,作出可行域,利用几何意义即可解决.【详解】作出可行域,如图令,则,显然当直线经过时,最大,且,故的最大值为.故答案为:.【点睛】本题考查线性规划中非线性目标函数的最值问题,要做好此类题,前提是正确画出可行域,本题是一道基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【解析】

(1)求出的导数,根据导函数的性质判断函数的单调性,再利用函数单调性解函数型不等式;(2)构造函数,利用导数判断在区间上单调递减,结合可得结果.【详解】(1)若,则.设,则,所以在上单调递减,在上单调递增.又当时,;当时,;当时,,所以所以在上单调递增,又,所以不等式的解集为.(2)设,再令,,在上单调递减,又,,,,,.即【点睛】本题考查利用函数的导数来判断函数的单调性,再利用函数的单调性来解决不等式问题,属于较难题.18、(1),;(2)当值为时,无盖三棱锥容器的容积最大.【解析】

(1)由已知求得,求得三角形的面积,再由已知得到平面,代入三棱锥体积公式求的值;(2)由题意知,在等腰三角形中,,则,,写出三角形面积,求其平方导数的最值,则答案可求.【详解】解:(1)由题意,为等腰直角三角形,又,,恰好是该零件的盖,,则,由图甲知,,,则在图乙中,,,,又,平面,平面,;(2)由题意知,在等腰三角形中,,则,,.令,,,.可得:当时,,当,时,,当时,有最大值.由(1)知,平面,该三棱锥容积的最大值为,且.当时,取得最大值,无盖三棱锥容器的容积最大.答:当值为时,无盖三棱锥容器的容积最大.【点睛】本题考查棱锥体积的求法,考查空间想象能力与思维能力,训练了利用导数求最值,属于中档题.19、(1)(2)的最小值为1,此时直线:【解析】

(1)用直接法求轨迹方程,即设动点为,把已知用坐标表示并整理即得.注意取值范围;(2)设:,将其与曲线的方程联立,消元并整理得,设,,则可得,,由求出,将直线方程与联立,得,求得,计算,设.显然,构造,由导数的知识求得其最小值,同时可得直线的方程.【详解】(1)设,则,即整理得(2)设:,将其与曲线的方程联立,得即设,,则,将直线:与联立,得∴∴设.显然构造在上恒成立所以在上单调递增所以,当且仅当,即时取“=”即的最小值为1,此时直线:.(注:1.如果按函数的性质求最值可以不扣分;2.若直线方程按斜率是否存在讨论,则可以根据步骤相应给分.)【点睛】本题考查求轨迹方程,考查直线与椭圆相交中的最值.直线与椭圆相交问题中常采用“设而不求”的思想方法,即设交点坐标为,设直线方程,直线方程与椭圆方程联立并消元,然后用韦达定理得(或),把这个代入其他条件变形计算化简得出结论,本题属于难题,对学生的逻辑推理、运算求解能力有一定的要求.20、(Ⅰ)直线的直角坐标方程为;曲线的普通方程为;(Ⅱ).【解析】

(I)利用参数方程、普通方程、极坐标方程间的互化公式即可;(II)将直线参数方程代入抛物线的普通方程,可得,而根据直线参数方程的几何意义,知,代入即可解决.【详解】由可得直线的直角坐标方程为由曲线的参数方程,消去参数可得曲线的普通方程为.易知点在直线上,直线的参数方程为(为参数).将直线的参数方程代入曲线的普通方程,并整理得.设是方程的两根,则有

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论