版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省自贡市初2023届毕业生学业考试数学本试卷分为第I卷(选择题)和第II卷(非选择题)两部分,共6页,满分150分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,答卷时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效,考试结束后,将试题卷和答题卡一并交回.第I卷
选择题(共48分)注意事项:必须使用2B铅笔将答案标号填涂在答题卡上对应题目标号的位置上,如需改动,用橡皮擦干净后,再选涂其他答案标号.一、选择题(共12个小题,每小题4分,共48分,在每题给出的四个选项中,只有一项是符合题目要求的)1.如图,数轴上点A表示的数是2023,OAOB,则点B表示的数是(
)A.2023
B.2023
C.
12023
D.1【答案】B【解析】【分析】根据数轴的定义求解即可.【详解】解;∵数轴上点A表示的数是2023,OAOB,∴OB=2023,∴点B表示的数是2023,故选:B.【点睛】本题考查数轴上点表示有理数,熟练掌握数轴上点的特征是解题的关键.2.自贡恐龙博物馆今年“五一”期间接待游客约110000人.人数110000用科学记数法表示为(
)A.1.1104
B.11104
C.1.1105
D.1.1106第1页/共27页20232023【答案】C【解析】【分析】用科学记数法表示较大的数时,一般形式为a10n,其中1|a|10,n为整数.【详解】解:1100001.1105.故选:C.【点睛】本题考查了科学记数法,科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数.确定n的值时,要看把原来的数,变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值10时,n是正数;当原数的绝对值1时,n是负数,确定a与n的值是解题的关键.3.如图中六棱柱的左视图是(
)A.
B.
C.
D.【答案】A【解析】【分析】根据几何体的三视图的定义,画出从左面看所得到的图形即可.【详解】根据三视图的概念,可知选项A中的图形是左视图,选项C中的图形是主视图,选项D中的图形是俯视图,故选A.【点睛】本题主要考查了简单几何体的三视图,理解三视图的定义,熟练掌握三视图的画法是解题的关键.4.如图,某人沿路线ABCD行走,AB与CD方向相同,1128,则2(
)A.52
B.118
C.128
D.138第2页/共27页【答案】C【解析】【分析】证明ABCD,利用平行线的性质即可得到答案.【详解】解:AB与CD方向相同,ABCD,12,1128,2128.故选:C.【点睛】本题主要考查平行线的判定与性质,掌握平行线的性质是解题的关键.5.如图,边长为3的正方形OBCD
两边与坐标轴正半轴重合,点C的坐标是(
)A.(3,3)
B.(3,3)
C.3,3
D.(3,3)【答案】C【解析】【分析】根据正方形的性质,结合坐标的意义即可求解.【详解】解:∵边长为3的正方形OBCD
两边与坐标轴正半轴重合,∴OBBC3∴C3,3故选:C.【点睛】本题考查了坐标与图形,熟练掌握正方形的性质,数形结合是解题的关键.6.下列交通标志图案中,既是中心对称图形又是轴对称图形的是(
)A.
B.
C.
D.第3页/共27页,,【答案】B【解析】【分析】根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行逐一判断即可.【详解】解:A、是轴对称图形,不是中心对称图形,故A选项不合题意;B、既是轴对称图形又是中心对称图形,故B选项符合题意;C、既不是轴对称图形,也不是中心对称图形,故C选项不合题意;D、是轴对称图形,不是中心对称图形,故D选项不合题意.故选:B.【点睛】本题主要考查了轴对称图形和中心对称图形,解题的关键在于能够熟练掌握轴对称图形和中心对称图形的定义.7.下列说法正确的是(
)A.甲、乙两人10次测试成绩的方差分别是S甲
2
4,S乙
2
14,则乙的成绩更稳定B.某奖券的中奖率为
1100,买100张奖券,一定会中奖1次C.要了解神舟飞船零件质量情况,适合采用抽样调查D.x3是不等式2x13的解,这是一个必然事件【答案】D【解析】【分析】根据方差的意义,概率的意义,抽样调查与普查,不等式的解与必然事件的定义逐项分析判断【详解】解:A.甲、乙两人10次测试成绩的方差分别是S甲
2
4,S乙
2
14,则甲的成绩更稳定,故该选项不正确,不符合题意;B.某奖券的中奖率为
1100,买100张奖券,可能会中奖1次,故该选项不正确,不符合题意;C.要了解神舟飞船零件质量情况,适合采用全面调查D.解:2(x1)3,第4页/共27页2x5,解得:
5x,2∴x3是不等式2(x1)3的解,这是一个必然事件,故该选项正确,符合题意;故选:D.【点睛】本题考查了方差的意义,概率的意义,抽样调查与普查,不等式的解与必然事件的定义,熟练掌握以上知识是解题的关键.8.如图,ABC内接于O,CD是O的直径,连接BD,DCA41,则ABC的度数是(
)A.41
B.45
C.49
D.59【答案】C【解析】【分析】由CD是O的直径,得出DBC90,进而根据同弧所对的圆周角相等,得出ABDACD41,进而即可求解.【详解】解:∵CD是O的直径,∴DBC90,∵,∴ABDACD41,∴ABCDBCDBA904149,故选:C.【点睛】本题考查了圆周角定理的推论,熟练掌握圆周角定理是解题的关键.9.第29届自贡国际恐龙灯会“辉煌新时代”主题灯组上有一幅不完整的正多边形图案,小华量得图中一边与对角线的夹角ACB15,算出这个正多边形的边数是(
)A.9
B.10
C.11
D.12第5页/共27页ADADADAD【答案】D【解析】【分析】根据三角形内角和定理以及正多边形的性质,得出B150,然后可得每一个外角为30,进而即可求解.【详解】解:依题意,ABBC,ACB15,∴BAC15∴ABC180∠ACB∠BAC150∴这个正多边形的一个外角为18015030,所以这个多边形的边数为
36030
=12,故选:D.【点睛】本题考查了三角形内角和定理,正多边形的性质,正多边形的外角与边数的关系,熟练掌握正多边的外角和等于360°是解题的关键.10.如图1,小亮家、报亭、羽毛球馆在一条直线上.小亮从家跑步到羽毛球馆打羽毛球,再去报亭看报,最后散步回家.小亮离家距离y与时间x之间的关系如图2所示.下列结论错误的是(
)A.小亮从家到羽毛球馆用了7分钟钟走75米C.报亭到小亮家的距离是400米
B.小亮从羽毛球馆到报亭平均每分D.小亮打羽毛球的时间是37分钟【答案】D【解析】【分析】根据函数图象,逐项分析判断即可求解.【详解】解:A.从函数图象可得出,小亮从家到羽毛球馆用了7分钟,故该选项正确,不符合题意;B.
10004004537
=75(米/分钟),即小亮从羽毛球馆到报亭平均每分钟走75米,故该选项正确,不符合题意;C.从函数图象可得出,报亭到小亮家的距离是400米,故该选项正确,不符合题意;第6页/共27页D.小亮打羽毛球的时间是37730分钟,故该选项不正确,符合题意;故选:D.【点睛】本题考查了函数图象,理解函数图像上点的坐标的实际意义,数形结合是解题的关键.11.经过
12与x轴有交点,则线段AB长为(
)A.10
B.12
C.13
D.15【答案】B【解析】【分析】根据题意,求得对称轴,进而得出cb1,求得抛物线解析式,根据抛物线与x轴有交点得出b24ac0,进而得出b2,则c1,求得A,B的横坐标,即可求解.12∵抛物线经过A(23b,m),B(4bc1,m)两点
bx2a
b1∴
23b4bc12
b,即cb1,∴原方程为
1yx2bxb22b2,2∵抛物线与x轴有交点,∴b24ac0,即
1
2∴b2,cb1211,∴23b264,4bc18118,∴AB4bb812,故选:B.【点睛】本题考查了二次函数的对称性,与x轴交点问题,熟练掌握二次函数的性质是解题的关键.第7页/共27页A(23b,m),B(4bc1,m)A(23b,m),B(4bc1,m)两点的抛物线yx2bxb22c(x为自变量)【详解】解:∵抛物线yx2bxb22c的对称轴为直线22b2422b20,2b即b24b40,即0,12.如图,分别经过原点O和点A4,0的动直线a,b夹角OBA30,点M是OB中c1234点,连接AM,则sinOAM
的最大值是(
)A.
366
B.
32
C.
63
D.
56【答案】A【解析】【分析】根据已知条件,OBA30,得出B的轨迹是圆,取点D8,0则AM是OBD的中位线,则求得ODB的正弦的最大值即可求解,当BD与C相切时,ODB最大,则正弦值最大,据此即可求解.【详解】解:如图所示,以OA为边向上作等边OAC,过点C作CEx轴于点E,则OCOAAC4,则C的横坐标为2,纵坐标为CEOCsin6023,∴C2,23,取点D8,0则AM是OBD的中位线,2
3,∵OBA30,∴点B在半径为4的C上运动,∵AM是OBD的中位线,∴AM∥BD,∴OAM
ODB,当BD与C相切时,ODB最大,则正弦值最大,在RtBCD中,BDCD
2
BC
2
4324242,过点B作FB∥x轴,过点C作CFFG于点F,过点D作DGFG于点G,则FG第8页/共27页,,∴CD3482,,∴CD3482∵BD与C相切,∴BDCB,∴FBCFCBFBCDBG90,∴FCBDBG,∴CFB∽BGD,CF∴GB
FBGD
BCBD
=
442
=
12设CFa,FBb,则BG=2a,DG2b∴F2,23a,G8,2b∴FG826,DGa232a∴32b解得:
2b23
6∴
DGsinODBsinGBDBD
2b42
366故选:A.【点睛】本题考查了相似三角形的性质与判定,求正弦,等边三角形的性质。圆周角定理,得出点B的轨迹是解题的关键.第Ⅱ卷(非选择题
共102分)注意事项:使用0.5毫米黑色逐水签字笔在答题卡上题目所指示区城内作答,作图题可先用铅笔绘出,确认后再用0.5毫米黑色墨水签字笔描清楚,答在试题卷上无效.二、填空题(共6个小题,每小题4分,共24分)第9页/共27页2b8a22b8a213.计算:7a24a2________.【答案】3a2【解析】【分析】直接合并同类项即可求解.【详解】解:7a24a23a2.故答案为:3a2.【点睛】此题主要考查合并同类项,熟练掌握运算法则是解题关键.14.请写出一个比23小的整数________.【答案】4(答案不唯一)【解析】【分析】根据算术平方根的意义求解.【详解】解:∴由1623可得:1623,即423,故答案为:4(答案不唯一).【点睛】本题考查算术平方根和无理数的估算,熟练掌握基本知识是解题关键.15.化简
x21x1
_______.【答案】x1【解析】【分析】将分子用平方差公式展开再化简即可.【详解】解:原式=
(x1)(x1)x1
(x1),故答案为:(x1).【点睛】本题考查了分式的化简,掌握平方差公式和分式化简是关键.16.端午节早上,小颖为全家人蒸了2个蛋黄粽,3个鲜肉粽,她从中随机挑选了两个孝敬爷爷奶奶,请问爷爷奶奶吃到同类粽子的概率是________.【答案】
25
##0.4【解析】【分析】画树状图可得,共有20种等可能的结果,其中爷爷奶奶吃到同类粽子有8种等可能的结果,再利用概率公式求解即可.【详解】解:设蛋黄粽为A,鲜肉粽为B,画树状图如下:第10页/共27页共有20种等可能的结果,其中爷爷奶奶吃到同类粽子有8种等可能的结果,∴爷爷奶奶吃到同类粽子的概率是2故答案为:5.
820
25【点睛】本题考查用列表法或树状图求概率、概率公式,熟练掌握相关知识是解题的关键.17.如图,小珍同学用半径为8cm,圆心角为100的扇形纸片,制作一个底面半径为2cm的圆锥侧面,则圆锥上粘贴部分的面积是________cm2.【答案】
169
##
169【解析】【分析】由题意知,底面半径为2cm的圆锥的底面周长为4cm,扇形弧长为1008180
409
40499上粘贴部分的面积为扇形中未组成圆锥的弧长部分所对应的扇形面积可得圆锥上粘贴部分的面积为
12
1429【详解】解:由题意知,底面半径为2cm的圆锥的底面周长为4cm,扇形弧长为1008180
40
cm,∴扇形中未组成圆锥底面的弧长
40l9
49∵圆锥上粘贴部分的面积为扇形中未组成圆锥的弧长部分所对应的扇形面积,第11页/共27页,cm,则扇形中未组成圆锥底面的弧长l4cm,根据圆锥lr8,计算求解即可.9,cm,则扇形中未组成圆锥底面的弧长l4cm,根据圆锥lr8,计算求解即可.94cm,∴圆锥上粘贴部分的面积为
12
1416299故答案为:
169
.【点睛】本题考查了扇形的弧长、面积公式.解题的关键在于熟练掌握S
扇形
=
12
lr,l扇形
nr18.如图,直线
1yx2与x轴,y轴分别交于A,B两点,点D是线段AB上一动点,3点H是直线
43BE,DF,HD.当BEDF取最小值时,3BH5DH的最小值是________.【答案】
392【解析】【分析】作出点C作CDAB于点D,交x轴于点F,此时BEDF的最小值为CD的长,利用解直角三角形求得
110联立即可求得点D的坐标,过点D作DGy轴于点G,此时3BH5DH的最小值是5DG的长,据此求解即可.【详解】解:∵直线
1yx2与x轴,y轴分别交于A,B两点,3∴B,A0作点B关于x轴的对称点B把点B右平移3个单位得到C作CDAB于点D,交x轴于点F,过点BB∥CD交x轴于点E,则四边形EFCB是平行四边形,此时,BEBCF,∴BEDFCFDFCD有最小值,作CPx轴于点P,第12页/共27页lr8cm2,nr180,其中为扇形的圆心角,为扇形的半径.yx2上的一动点,动点E,lr8cm2,nr180,其中为扇形的圆心角,为扇形的半径.yx2上的一动点,动点E,F3,连接m0,m0,3,2,F,,利用待定系数法求得直线CD的解析式,36,,02,0,2,,23向,E作E则CP2,OP3,∵CFPAFD,∴FCPFAD,∴tanFCPtanFAD,∴
PFPC
OBPF
26∴
23
,设直线CD的解析式为ykxb,3kb23∴直线CD的解析式为y3x11,39联立,110即
397过点D作DGy轴于点G,直线
43
30
2
OB
2
5,23∴
OQsinOBQBQ
355,2
第13页/共27页OA,即2,PF,则F1103,k3则11k0,解得11,x3x1110yxOA,即2,PF,则F1103,k3则11k0,解得11,x3x1110yx2,解得7,y3D,;1010yx2与x轴的交点为Q2,,则BQOQ2∴
3HGBHsinGBHBH,5∴
3
HG
5DG
,即3BH5DH的最小值是39故答案为:.2
395DG510
392
,【点睛】本题考查了一次函数的应用,解直角三角形,利用轴对称求最短距离,解题的关键是灵活运用所学知识解决问题.三、解答题(共8个题,共78分)19.计算:|3|(71)022.【答案】2【解析】【分析】先化简绝对值,零指数幂,有理数的乘方,再进行计算即可求解.【详解】解:|3|(71)0223142.【点睛】本题考查了实数的混合运算,熟练掌握化简绝对值,零指数幂,有理数的乘方是解题的关键.20.如图,在平行四边形ABCD中,点E、F分别在边AD和BC上,且BF
DE.求证:AFCE.【答案】见解析【解析】【分析】平行四边形的性质得到AD∥BC,ADBC,进而推出AECF,得到四边形AFCE是平行四边形,即可得出结论.【详解】证明:∵四边形ABCD是平行四边形,AD∥BC,ADBC,第14页/共27页3BH5DH5BHDH3BH5DH5BHDH5DH5BFDE,ADDEBCBF,即AECF,AECF,四边形AFCE是平行四边形,AFCE.【点睛】本题考查平行四边形的判定和性质.熟练掌握平行四边形的判定方法是解题的关键.21.某校组织七年级学生到江姐故里研学旅行,租用同型号客车4辆,还剩30人没有座位;租用5辆,还空10个座位.求该客车的载客量.【答案】该客车的载客量为40人【解析】【分析】设该客车的载客量为x人,由题意知,4x305x10,计算求解即可.【详解】解:设该客车的载客量为x人,由题意知,4x305x10,解得,x40,∴该客车的载客量为40人.【点睛】本题考查了一元一次方程的应用.解题的关键在于根据题意正确的列方程.22.某校为了解“世界读书日”主题活动开展情况,对本学期开学以来学生课外读书情况进行了随机抽样调查,所抽取的12名学生课外读书数量(单位:本)数据如下:2,4,5,4,3,5,3,4,1,3,2,4.(1)补全学生课外读书数量条形统计图;(2)请直接写出本次所抽取学生课外读书数量的众数、中位数和平均数;(3)该校有600名学生,请根据抽样调查的结果,估计本学期开学以来课外读书数量不少于3本的学生人数.【答案】(1)补全学生课外读书数量条形统计图见解析7
10(2)4,
2,3
第15页/共27页(3)450人【解析】【分析】(1)根据已知条件可知,课外读书数量为2本的有2人,4本的有4人,据此可以补全条形统计图;(2)根据众数,中位数和平均数的定义求解即可;(3)用该校学生总数乘以抽样调查的数据中外读书数量不少于3本的学生人数所占的比例即可.【小问1详解】补全学生课外读书数量条形统计图,如图:【小问2详解】∵本次所抽取学生课外读书数量的数据中出现次数最多的是4,∴众数是4.将本次所抽取的12名学生课外读书数量的数据,按照从小到大的顺序排列为:1,2,2,3,3,3,4,4,4,4,5,5.∵中间两位数据是3,4,∴中位数是:
342
72平均数为:
112233445210123【小问3详解】34291212∴该校有600名学生,估计本学期开学以来课外读书数量不少于3本的学生人数为450人.【点睛】本题主要考查了条形统计图,众数,中位数,平均数,以及用样本所占百分比估计总体的数量,熟练掌握众数,中位数,平均数的定义是解题的关键.23.如图1,一大一小两个等腰直角三角形叠放在一起,M,N分别是斜边DE,AB的中点,DE2,AB4.第16页/共27页.x.x.600600450,(1)将CDE绕顶点C旋转一周,请直接写出点M,N距离的最大值和最小值;(2)将CDE绕顶点C逆时针旋转120(如图2),求MN的长.【答案】(1)最大值为3,最小值为1(2)7【解析】【分析】(1)根据直角三角形斜边上的中线,得出CM,CN的值,进而根据题意求得最大值与最小值即可求解;(2)过点N作NPMC,交MC的延长线于点P,根据旋转的性质求得MCN120,进而得出NCP60,进而可得CP1,勾股定理解RtNCP,RtMCP,即可求解.【小问1详解】解:依题意,
11CMDE1,CNAB2,22当M在NC的延长线上时,M,N的距离最大,最大值为CMCN123,当M在线段CN上时,M,N的距离最小,最小值为CNCN211;【小问2详解】解:如图所示,过点N作NPMC,交MC的延长线于点P,第17页/共27页∵CDE绕顶点C逆时针旋转120,∴BCE120,∵BCNECM
45,∴MCN
BCMECM
BCE120,∴NCP60,∴CNP30,∴
1CPCN1,2在RtCNP中,NP
NC2CP
2
3,在RtMNP中,MPMCCP112,∴MNNP
2
MP
2
347.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半,勾股定理,旋转的性质,含30度角的直角三角形的性质,熟练掌握旋转的性质,勾股定理是解题的关键.m1x2分别交x轴,y轴于点B,C,且OAC与△OBC的面积比为2:1.(1)求反比例函数和一次函数的解析式;(2)请直接写出y1y2时,x的取值范围.第18页/共27页424.如图,点A2,在反比例函数y图象上.一次函数y424.如图,点A2,在反比例函数y图象上.一次函数ykxb的图象经过点A,8【答案】(1)反比例函数解析式为1x23324433解析式为y24x4时x的取值范围为x1或0x2【解析】【分析】(1)将
mm
1x28bb12OB
bk
OCx,由OAC与△OBC的面积比为2:1,可得OCOB
A
2x1OB22bk
2
,解得bk或b,当bk时,将A4入y2kx得,42kk,解得
432332k4,则y4x4;244(2)由一次函数解析式不同分两种情况求解:①当一次函数解析式为y23x3时,如图8x343233根据函数图象判断x的取值范围即可.【小问1详解】
2
8x
2,解得解:将A4入y1
mm
x28∴反比例函数解析式为1x第19页/共27页y,一次函数解析式为y4x4或y4x4(2)当一次函数解析式为y2x时,x的取值范围为x3或0x2;当一次函数A,入y得,4,解得m8,可得反比例函数解析式为24代y;当x0,yb,则C,bOCb,当yy,一次函数解析式为y4x4或y4x4(2)当一次函数解析式为y2x时,x的取值范围为x3或0x2;当一次函数A,入y得,4,解得m8,可得反比例函数解析式为24代y;当x0,yb,则C,bOCb,当y0,x,则B,0,k0,xk22,整理得A2,即k2,代bk,则y4x4;当bk时,将A,入ykxb得,42kk,解得24代y1xx284,解得y或y4,根据函数图象判断x的取值范围即可;1,联立yxy1②当一次函数解析式为y24x4时,如图2,联立y4x4y8或y4,x1x得,4,解得m8,2,代y;当x0,y2b,则C0,b,OCb,b∵OAC与△OBC的面积比为2:1,OCx2∴OCOB2
A
21
xAOB
2,即
2bk
2
,解得bk或bk,当bk时,将
44423233当b时,将A4入y2
kxb得,42kk,解得k4,则y4x4;244338∴反比例函数解析式为1x2332【小问2详解】解:由题意知,由一次函数解析式不同分两种情况求解:44①当一次函数解析式为y23x3时,如图1,8x3联立233由函数图象可知,y1y2时,x的取值范围为x3或0x2;②当一次函数解析式为y24x4时,如图2,第20页/共27页y0,x,则Bb,0,OBb,当2kkk,整理得A,入ykxb得,42kky0,x,则Bb,0,OBb,当2kkk,整理得A,入ykxb得,42kk,解得k,则yx;24代k2,代综上,一次函数解析式为y2x或y24x4;y,一次函数解析式为y4x4或y4x4;y1xx284,解得y或y4,4yx38联立1x2
2,解得由函数图象可知,y1y2时,x的取值范围为x1或0x2;4433数解析式为y24x4时x的取值范围为x1或0x2.【点睛】本题考查了一次函数解析式,反比例函数解析式,一次函数与几何综合,反比例函数与一次函数综合.解题的关键在于对知识的熟练掌握与灵活运用.25.为测量学校后山高度,数学兴趣小组活动过程如下:(1)测量坡角如图1,后山一侧有三段相对平直的山坡AB,BC,CD,山的高度即为三段坡面的铅直高度BH,CQ,DR之和,坡面的长度可以直接测量得到,要求山坡高度还需要知道坡角大小.如图2,同学们将两根直杆MN,MP的一端放在坡面起始端A处,直杆MP沿坡面AB方向放置,在直杆MN另一端N用细线系小重物G,当直杆MN与铅垂线NG重合时,测得两杆夹角的度数,由此可得山坡AB坡角的度数.请直接写出,之间的数量关系.(2)测量山高同学们测得山坡AB,BC,CD的坡长依次为40米,50米,40米,坡角依次为243045第21页/共27页yy4x4y8或yy4x4y8或y4,x1x综上,当一次函数解析式为y2x时,x的取值范围为x3或0x2;当一次函,,;为求BH,小熠同学在作业本上画了一个含24角的RtTKS(如图3),量得KT5cm,TS2cm.求山高DF.(21.41,结果精确到1米)(3)测量改进由于测量工作量较大,同学们围绕如何优化测量进行了深入探究,有了以下新的测量方法.如图4,5,在学校操场上,将直杆NP置于MN的顶端,当MN与铅垂线NG重合时,转动直杆NP,使点N,P,D共线,测得MNP的度数,从而得到山顶仰角1,向后山方向前进40米,采用相同方式,测得山顶仰角2;画一个含1的直角三角形,量得该角对边和另一直角边分别为a1厘米,b1厘米,再画一个含2的直角三角形,量得该角对边和另一直角边分别为a2厘米,b2厘米.已知杆高MN为1.6米,求山高DF.(结果用不含1,2的字母表示)【答案】(1)90;(2)山高DF为69米;(3)山高
40aa12a2b1a1b2
【解析】【分析】(1)利用互余的性质即可求解;(2)先求得sin240.4,再分别在RtABH、RtBCQ、RtCDR中,解直角三角形即可求解;(3)先求得
aa1b2b1
2的长,得到方程NL40,据此即可求解.【小问1详解】解:由题意得NMO
90,
第22页/共27页DF的高为1.6米..tan1DF的高为1.6米..tan1,tan2,在RtNDL和RtN中,分别求得NL和NNL∴90;【小问2详解】解:在RtTKS中,KT5cm,TS2cm.∴
TSsin24KT
25在RtABH中,ABH24,AB40米,∴BHABsin24400.416(米),在RtBCQ中,CBQ30,BC50米,∴
1CQBCsin305025(米),2在RtCDR中,DCR45,CD40米,∴DRCDsin4540
22
28(米),∴山高DF16252869(米),答:山高DF为69米;【小问3详解】解:如图,由题意得
aa1b2b1
2设山高DFx,则DLx,第23页/共27页0.4,tan1,tan2,0.4,tan1,tan2,在RtNDL中,DNL1,DLx,DLa1b1∴
ba1LDLa∴N2b2∴
L
ba2∵NNMM40,L
b1
ba2解得
x12
40aa2112
40aaDF12abab2112
1.640aa12a2b1a1b2
【点睛】本题考查了解直角三角形的应用,能够正确地构建出直角三角形,将实际问题化归为解直角三角形的问题是解答此类题的关键.26.如图,抛物线
43
第24页/共27页∴NLtan1,NL1x,在RtN中,DN2,DLx,DL∴NLtan1,NL1x,在RtN中,DN2,DLx,DLtan2,LN2x,∴NLN40,即a1x2x40,abab,山高答:山高DF的高为1.6米.yx2bx4与x轴交于A(3,0),B两点,与y轴交于点C.(1)求抛物线解析式及B,C两点坐标;(2)以A,B,C,D为顶点的四边形是平行四边形,求点D坐标;(3)该
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度茶叶品牌推广与市场拓展合同
- 二零二四年度研发合作及技术开发合同
- 村上建房代建协议书(2篇)
- 员工违反纪律协议书(2篇)
- 图书馆编制外劳动合同(2篇)
- 合伙开厂协议书(2篇)
- 抗盐碱树苗购销合同
- 杂粮购进协议
- 通信电缆购销协议
- 广告代理服务合同范本样本
- (四级)品酒师资格认证理论备考试题及答案
- 主要负责人和安全生产管理人员安全培训课件初训修订版
- 中国近代人物研究学习通超星期末考试答案章节答案2024年
- 2024年全国半导体行业职业技能竞赛(半导体分立器件和集成电路装调工赛项)理论考试题库(含答案)
- 统编版高中语文教材的“三种文化”内容及价值实现
- 老年人的心理健康(共29张课件)
- 北师大版小学数学公式手册
- 2024-2025学年山东省莱芜市名校初三全真生物试题模拟试卷(2)含解析
- 网络安全威胁情报分析考核试卷
- 冷高和副高讲解
- 新兴材料对造纸业的影响
评论
0/150
提交评论