2023-2024学年浙江省嘉兴嘉善高级中学高三第二次模拟考试数学试卷含解析_第1页
2023-2024学年浙江省嘉兴嘉善高级中学高三第二次模拟考试数学试卷含解析_第2页
2023-2024学年浙江省嘉兴嘉善高级中学高三第二次模拟考试数学试卷含解析_第3页
2023-2024学年浙江省嘉兴嘉善高级中学高三第二次模拟考试数学试卷含解析_第4页
2023-2024学年浙江省嘉兴嘉善高级中学高三第二次模拟考试数学试卷含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年浙江省嘉兴嘉善高级中学高三第二次模拟考试数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若复数满足(为虚数单位),则其共轭复数的虚部为()A. B. C. D.2.已知数列an满足:an=2,n≤5a1A.16 B.17 C.18 D.193.已知抛物线y2=4x的焦点为F,抛物线上任意一点P,且PQ⊥y轴交y轴于点Q,则的最小值为()A. B. C.l D.14.函数的大致图象是A. B. C. D.5.已知函数,则下列判断错误的是()A.的最小正周期为 B.的值域为C.的图象关于直线对称 D.的图象关于点对称6.在平面直角坐标系中,锐角顶点在坐标原点,始边为x轴正半轴,终边与单位圆交于点,则()A. B. C. D.7.函数(其中,,)的图象如图,则此函数表达式为()A. B.C. D.8.已知正三棱锥的所有顶点都在球的球面上,其底面边长为4,、、分别为侧棱,,的中点.若在三棱锥内,且三棱锥的体积是三棱锥体积的4倍,则此外接球的体积与三棱锥体积的比值为()A. B. C. D.9.记单调递增的等比数列的前项和为,若,,则()A. B. C. D.10.已知命题p:“”是“”的充要条件;,,则()A.为真命题 B.为真命题C.为真命题 D.为假命题11.方程在区间内的所有解之和等于()A.4 B.6 C.8 D.1012.已知函数,其中,记函数满足条件:为事件,则事件发生的概率为A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数若关于的不等式的解集为,则实数的所有可能值之和为_______.14.已知实数,满足,则目标函数的最小值为__________.15.已知多项式满足,则_________,__________.16.已知函数是定义在上的奇函数,则的值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直线与椭圆恰有一个公共点,与圆相交于两点.(I)求与的关系式;(II)点与点关于坐标原点对称.若当时,的面积取到最大值,求椭圆的离心率.18.(12分)已知等腰梯形中(如图1),,,为线段的中点,、为线段上的点,,现将四边形沿折起(如图2)(1)求证:平面;(2)在图2中,若,求直线与平面所成角的正弦值.19.(12分)如图1,四边形是边长为2的菱形,,为的中点,以为折痕将折起到的位置,使得平面平面,如图2.(1)证明:平面平面;(2)求点到平面的距离.20.(12分)在中,内角的对边分别是,满足条件.(1)求角;(2)若边上的高为,求的长.21.(12分)已知函数.(Ⅰ)求函数的极值;(Ⅱ)若,且,求证:.22.(10分)已知函数,,设.(1)当时,求函数的单调区间;(2)设方程(其中为常数)的两根分别为,,证明:.(注:是的导函数)

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

由已知等式求出z,再由共轭复数的概念求得,即可得虚部.【详解】由zi=1﹣i,∴z=,所以共轭复数=-1+,虚部为1故选D.【点睛】本题考查复数代数形式的乘除运算和共轭复数的基本概念,属于基础题.2、B【解析】

由题意可得a1=a2=a3=a4=a5=2,累加法求得a62+【详解】解:an即a1=an⩾6时,a1a1两式相除可得1+a则an2=由a6a7…,ak2=可得aa1且a1正整数k(k⩾5)时,要使得a1则ak+1则k=17,故选:B.【点睛】本题考查与递推数列相关的方程的整数解的求法,注意将题设中的递推关系变形得到新的递推关系,从而可简化与数列相关的方程,本题属于难题.3、A【解析】

设点,则点,,利用向量数量积的坐标运算可得,利用二次函数的性质可得最值.【详解】解:设点,则点,,,,当时,取最小值,最小值为.故选:A.【点睛】本题考查抛物线背景下的向量的坐标运算,考查学生的计算能力,是基础题.4、A【解析】

利用函数的对称性及函数值的符号即可作出判断.【详解】由题意可知函数为奇函数,可排除B选项;当时,,可排除D选项;当时,,当时,,即,可排除C选项,故选:A【点睛】本题考查了函数图象的判断,函数对称性的应用,属于中档题.5、D【解析】

先将函数化为,再由三角函数的性质,逐项判断,即可得出结果.【详解】可得对于A,的最小正周期为,故A正确;对于B,由,可得,故B正确;对于C,正弦函数对称轴可得:解得:,当,,故C正确;对于D,正弦函数对称中心的横坐标为:解得:若图象关于点对称,则解得:,故D错误;故选:D.【点睛】本题考查三角恒等变换,三角函数的性质,熟记三角函数基本公式和基本性质,考查了分析能力和计算能力,属于基础题.6、A【解析】

根据单位圆以及角度范围,可得,然后根据三角函数定义,可得,最后根据两角和的正弦公式,二倍角公式,简单计算,可得结果.【详解】由题可知:,又为锐角所以,根据三角函数的定义:所以由所以故选:A【点睛】本题考查三角函数的定义以及两角和正弦公式,还考查二倍角的正弦、余弦公式,难点在于公式的计算,识记公式,简单计算,属基础题.7、B【解析】

由图象的顶点坐标求出,由周期求出,通过图象经过点,求出,从而得出函数解析式.【详解】解:由图象知,,则,图中的点应对应正弦曲线中的点,所以,解得,故函数表达式为.故选:B.【点睛】本题主要考查三角函数图象及性质,三角函数的解析式等基础知识;考查考生的化归与转化思想,数形结合思想,属于基础题.8、D【解析】

如图,平面截球所得截面的图形为圆面,计算,由勾股定理解得,此外接球的体积为,三棱锥体积为,得到答案.【详解】如图,平面截球所得截面的图形为圆面.正三棱锥中,过作底面的垂线,垂足为,与平面交点记为,连接、.依题意,所以,设球的半径为,在中,,,,由勾股定理:,解得,此外接球的体积为,由于平面平面,所以平面,球心到平面的距离为,则,所以三棱锥体积为,所以此外接球的体积与三棱锥体积比值为.故选:D.【点睛】本题考查了三棱锥的外接球问题,三棱锥体积,球体积,意在考查学生的计算能力和空间想象能力.9、C【解析】

先利用等比数列的性质得到的值,再根据的方程组可得的值,从而得到数列的公比,进而得到数列的通项和前项和,根据后两个公式可得正确的选项.【详解】因为为等比数列,所以,故即,由可得或,因为为递增数列,故符合.此时,所以或(舍,因为为递增数列).故,.故选C.【点睛】一般地,如果为等比数列,为其前项和,则有性质:(1)若,则;(2)公比时,则有,其中为常数且;(3)为等比数列()且公比为.10、B【解析】

由的单调性,可判断p是真命题;分类讨论打开绝对值,可得q是假命题,依次分析即得解【详解】由函数是R上的增函数,知命题p是真命题.对于命题q,当,即时,;当,即时,,由,得,无解,因此命题q是假命题.所以为假命题,A错误;为真命题,B正确;为假命题,C错误;为真命题,D错误.故选:B【点睛】本题考查了命题的逻辑连接词,考查了学生逻辑推理,分类讨论,数学运算的能力,属于中档题.11、C【解析】

画出函数和的图像,和均关于点中心对称,计算得到答案.【详解】,验证知不成立,故,画出函数和的图像,易知:和均关于点中心对称,图像共有8个交点,故所有解之和等于.故选:.【点睛】本题考查了方程解的问题,意在考查学生的计算能力和应用能力,确定函数关于点中心对称是解题的关键.12、D【解析】

由得,分别以为横纵坐标建立如图所示平面直角坐标系,由图可知,.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

由分段函数可得不满足题意;时,,可得,即有,解方程可得,4,结合指数函数的图象和二次函数的图象即可得到所求和.【详解】解:由函数,可得的增区间为,,时,,,时,,当关于的不等式的解集为,,可得不成立,时,时,不成立;,即为,可得,即有,显然,4成立;由和的图象可得在仅有两个交点.综上可得的所有值的和为1.故答案为:1.【点睛】本题考查分段函数的图象和性质,考查不等式的解法,注意运用分类讨论思想方法,考查化简运算能力,属于中档题.14、-1【解析】

作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.【详解】作出实数x,y满足对应的平面区域如图阴影所示;由z=x+2y﹣1,得yx,平移直线yx,由图象可知当直线yx经过点A时,直线yx的纵截距最小,此时z最小.由,得A(﹣1,﹣1),此时z的最小值为z=﹣1﹣2﹣1=﹣1,故答案为﹣1.【点睛】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法,是基础题15、【解析】∵多项式满足∴令,得,则∴∴该多项式的一次项系数为∴∴∴令,得故答案为5,7216、【解析】

先利用辅助角公式将转化成,根据函数是定义在上的奇函数得出,从而得出函数解析式,最后求出即可.【详解】解:,又因为定义在上的奇函数,则,则,又因为,所以,,所以.故答案为:【点睛】本题考查三角函数的化简,三角函数的奇偶性和三角函数求值,考查了基本知识的应用能力和计算能力,是基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(II)【解析】

(I)联立直线与椭圆的方程,根据判别式等于0,即可求出结果;(Ⅱ)因点与点关于坐标原点对称,可得的面积是的面积的两倍,再由当时,的面积取到最大值,可得,进而可得原点到直线的距离,再由点到直线的距离公式,以及(I)的结果,即可求解.【详解】(I)由,得,则化简整理,得;(Ⅱ)因点与点关于坐标原点对称,故的面积是的面积的两倍.所以当时,的面积取到最大值,此时,从而原点到直线的距离,又,故.再由(I),得,则.又,故,即,从而,即.【点睛】本题主要考查直线与椭圆的位置关系,以及椭圆的简单性质,通常需要联立直线与椭圆方程,结合韦达定理、判别式等求解,属于中档试题.18、(1)见解析;(2).【解析】

(1)先连接,根据线面平行的判定定理,即可证明结论成立;(2)在图2中,过点作,垂足为,连接,,证明平面平面,得到点在底面上的投影必落在直线上,记为点在底面上的投影,连接,,得出即是直线与平面所成角,再由题中数据求解,即可得出结果.【详解】(1)连接,因为等腰梯形中(如图1),,,所以与平行且相等,即四边形为平行四边形;所以;又为线段的中点,为中点,易得:四边形也为平行四边形,所以;将四边形沿折起后,平行关系没有变化,仍有:,且,所以翻折后四边形也为平行四边形;故;因为平面,平面,所以平面;(2)在图2中,过点作,垂足为,连接,,因为,,翻折前梯形的高为,所以,则,;所以;又,,所以,即,所以;又,且平面,平面,所以平面;因此,平面平面;所以点在底面上的投影必落在直线上;记为点在底面上的投影,连接,,则平面;所以即是直线与平面所成角,因为,所以,因此,,故;因为,所以,因此,故,所以.即直线与平面所成角的正弦值为.【点睛】本题主要考查证明线面平行,以及求直线与平面所成的角,熟记线面平行的判定定理,以及线面角的求法即可,属于常考题型.19、(1)证明见解析(2)【解析】

(1)由题意可证得,,所以平面,则平面平面可证;(2)解法一:利用等体积法由可求出点到平面的距离;解法二:由条件知点到平面的距离等于点到平面的距离,过点作的垂线,垂足,证明平面,计算出即可.【详解】解法一:(1)依题意知,因为,所以.又平面平面,平面平面,平面,所以平面.又平面,所以.由已知,是等边三角形,且为的中点,所以.因为,所以.又,所以平面.又平面,所以平面平面.(2)在中,,,所以.由(1)知,平面,且,所以三棱锥的体积.在中,,,得,由(1)知,平面,所以,所以,设点到平面的距离,则三棱锥的体积,得.解法二:(1)同解法一;(2)因为,平面,平面,所以平面.所以点到平面的距离等于点到平面的距离.过点作的垂线,垂足,即.由(1)知,平面平面,平面平面,平面,所以平面,即为点到平面的距离.由(1)知,,在中,,,得.又,所以.所以点到平面的距离为.【点睛】本题主要考查空间面面垂直的的判定及点到面的距离,考查学生的空间想象能力、推理论证能力、运算求解能力.求点到平面的距离一般可采用两种方法求解:①等体积法;②作(找)出点到平面的垂线段,进行计算即可.20、(1).(2)【解析】

(1)利用正弦定理的边角互化可得,再根据,利用两角和的正弦公式即可求解.(2)已知,由知,在中,解出即可.【详解】(1)由正弦定理知由己知,而∴,(2)已知,则由知先求∴∴∴【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论