版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广东省广雅中学高三二诊模拟考试数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知等式成立,则()A.0 B.5 C.7 D.132.若复数是纯虚数,则()A.3 B.5 C. D.3.已知为实数集,,,则()A. B. C. D.4.已知集合,则()A. B. C. D.5.设函数,则函数的图像可能为()A. B. C. D.6.已知数列的通项公式为,将这个数列中的项摆放成如图所示的数阵.记为数阵从左至右的列,从上到下的行共个数的和,则数列的前2020项和为()A. B. C. D.7.等差数列中,,,则数列前6项和为()A.18 B.24 C.36 D.728.已知实数、满足约束条件,则的最大值为()A. B. C. D.9.设非零向量,,,满足,,且与的夹角为,则“”是“”的().A.充分非必要条件 B.必要非充分条件C.充分必要条件 D.既不充分也不必要条件10.若的内角满足,则的值为()A. B. C. D.11.已知向量,,且与的夹角为,则()A. B.1 C.或1 D.或912.已知函数满足:当时,,且对任意,都有,则()A.0 B.1 C.-1 D.二、填空题:本题共4小题,每小题5分,共20分。13.在正奇数非减数列中,每个正奇数出现次.已知存在整数、、,对所有的整数满足,其中表示不超过的最大整数.则等于______.14.已知集合U={1,3,5,9},A={1,3,9},B={1,9},则∁U(A∪B)=________.15.定义,已知,,若恰好有3个零点,则实数的取值范围是________.16.已知的展开式中第项与第项的二项式系数相等,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在三棱锥中,是边长为的正三角形,平面平面,,M、N分别为、的中点.(1)证明:;(2)求三棱锥的体积.18.(12分)已知六面体如图所示,平面,,,,,,是棱上的点,且满足.(1)求证:直线平面;(2)求二面角的正弦值.19.(12分)已知函数,其导函数为,(1)若,求不等式的解集;(2)证明:对任意的,恒有.20.(12分)十八大以来,党中央提出要在2020年实现全面脱贫,为了实现这一目标,国家对“新农合”(新型农村合作医疗)推出了新政,各级财政提高了对“新农合”的补助标准.提高了各项报销的比例,其中门诊报销比例如下:表1:新农合门诊报销比例医院类别村卫生室镇卫生院二甲医院三甲医院门诊报销比例60%40%30%20%根据以往的数据统计,李村一个结算年度门诊就诊人次情况如下:表2:李村一个结算年度门诊就诊情况统计表医院类别村卫生室镇卫生院二甲医院三甲医院一个结算年度内各门诊就诊人次占李村总就诊人次的比例70%10%15%5%如果一个结算年度每人次到村卫生室、镇卫生院、二甲医院、三甲医院门诊平均费用分别为50元、100元、200元、500元.若李村一个结算年度内去门诊就诊人次为2000人次.(Ⅰ)李村在这个结算年度内去三甲医院门诊就诊的人次中,60岁以上的人次占了80%,从去三甲医院门诊就诊的人次中任选2人次,恰好2人次都是60岁以上人次的概率是多少?(Ⅱ)如果将李村这个结算年度内门诊就诊人次占全村总就诊人次的比例视为概率,求李村这个结算年度每人次用于门诊实付费用(报销后个人应承担部分)的分布列与期望.21.(12分)己知点,分别是椭圆的上顶点和左焦点,若与圆相切于点,且点是线段靠近点的三等分点.求椭圆的标准方程;直线与椭圆只有一个公共点,且点在第二象限,过坐标原点且与垂直的直线与圆相交于,两点,求面积的取值范围.22.(10分)已知,均为给定的大于1的自然数,设集合,.(Ⅰ)当,时,用列举法表示集合;(Ⅱ)当时,,且集合满足下列条件:①对任意,;②.证明:(ⅰ)若,则(集合为集合在集合中的补集);(ⅱ)为一个定值(不必求出此定值);(Ⅲ)设,,,其中,,若,则.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
根据等式和特征和所求代数式的值的特征用特殊值法进行求解即可.【详解】由可知:令,得;令,得;令,得,得,,而,所以.故选:D【点睛】本题考查了二项式定理的应用,考查了特殊值代入法,考查了数学运算能力.2、C【解析】
先由已知,求出,进一步可得,再利用复数模的运算即可【详解】由z是纯虚数,得且,所以,.因此,.故选:C.【点睛】本题考查复数的除法、复数模的运算,考查学生的运算能力,是一道基础题.3、C【解析】
求出集合,,,由此能求出.【详解】为实数集,,,或,.故选:.【点睛】本题考查交集、补集的求法,考查交集、补集的性质等基础知识,考查运算求解能力,是基础题.4、B【解析】
计算,再计算交集得到答案【详解】,表示偶数,故.故选:.【点睛】本题考查了集合的交集,意在考查学生的计算能力.5、B【解析】
根据函数为偶函数排除,再计算排除得到答案.【详解】定义域为:,函数为偶函数,排除,排除故选【点睛】本题考查了函数图像,通过函数的单调性,奇偶性,特殊值排除选项是常用的技巧.6、D【解析】
由题意,设每一行的和为,可得,继而可求解,表示,裂项相消即可求解.【详解】由题意,设每一行的和为故因此:故故选:D【点睛】本题考查了等差数列型数阵的求和,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.7、C【解析】
由等差数列的性质可得,根据等差数列的前项和公式可得结果.【详解】∵等差数列中,,∴,即,∴,故选C.【点睛】本题主要考查了等差数列的性质以及等差数列的前项和公式的应用,属于基础题.8、C【解析】
作出不等式组表示的平面区域,作出目标函数对应的直线,结合图象知当直线过点时,取得最大值.【详解】解:作出约束条件表示的可行域是以为顶点的三角形及其内部,如下图表示:当目标函数经过点时,取得最大值,最大值为.故选:C.【点睛】本题主要考查线性规划等基础知识;考查运算求解能力,数形结合思想,应用意识,属于中档题.9、C【解析】
利用数量积的定义可得,即可判断出结论.【详解】解:,,,解得,,,解得,“”是“”的充分必要条件.故选:C.【点睛】本题主要考查平面向量数量积的应用,考查推理能力与计算能力,属于基础题.10、A【解析】
由,得到,得出,再结合三角函数的基本关系式,即可求解.【详解】由题意,角满足,则,又由角A是三角形的内角,所以,所以,因为,所以.故选:A.【点睛】本题主要考查了正弦函数的性质,以及三角函数的基本关系式和正弦的倍角公式的化简、求值问题,着重考查了推理与计算能力.11、C【解析】
由题意利用两个向量的数量积的定义和公式,求的值.【详解】解:由题意可得,求得,或,故选:C.【点睛】本题主要考查两个向量的数量积的定义和公式,属于基础题.12、C【解析】
由题意可知,代入函数表达式即可得解.【详解】由可知函数是周期为4的函数,.故选:C.【点睛】本题考查了分段函数和函数周期的应用,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】
将已知数列分组为(1),,共个组.设在第组,,则有,即.注意到,解得.所以,.因此,.故.14、{5}【解析】易得A∪B=A={1,3,9},则∁U(A∪B)={5}.15、【解析】
根据题意,分类讨论求解,当时,根据指数函数的图象和性质无零点,不合题意;当时,令,得,令,得或,再分当,两种情况讨论求解.【详解】由题意得:当时,在轴上方,且为增函数,无零点,至多有两个零点,不合题意;当时,令,得,令,得或,如图所示:当时,即时,要有3个零点,则,解得;当时,即时,要有3个零点,则,令,,所以在是减函数,又,要使,则须,所以.综上:实数的取值范围是.故答案为:【点睛】本题主要考查二次函数,指数函数的图象和分段函数的零点问题,还考查了分类讨论的思想和运算求解的能力,利用导数判断函数单调性,属于中档题.16、【解析】
根据的展开式中第项与第项的二项式系数相等,得到,再利用组合数公式求解.【详解】因为的展开式中第项与第项的二项式系数相等,所以,即,所以,即,解得.故答案为:10【点睛】本题主要考查二项式的系数,还考查了运算求解的能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】
(1)取中点,连接,,证明平面,由线面垂直的性质可得;(2)由,即可求得三棱锥的体积.【详解】解:(1)证明:取中点D,连接,.因为,,所以且,因为,平面,平面,所以平面.又平面,所以;(2)解:因为平面,平面,所以平面平面,过N作于E,则平面,因为平面平面,,平面平面,平面,所以平面,又因为平面,所以,由于,所以所以,所以.【点睛】本题考查线面垂直,考查三棱锥体积的计算,解题的关键是掌握线面垂直的判定与性质,属于中档题.18、(1)证明见解析(2)【解析】
(1)连接,设,连接.通过证明,证得直线平面.(2)建立空间直角坐标系,利用平面和平面的法向量,计算出二面角的正弦值.【详解】(1)连接,设,连接,因为,所以,所以,在中,因为,所以,且平面,故平面.(2)因为,,,,,所以,因为,平面,所以平面,所以,,取所在直线为轴,取所在直线为轴,取所在直线为轴,建立如图所示的空间直角坐标系,由已知可得,,,,所以,因为,所以,所以点的坐标为,所以,,设为平面的法向量,则,令,解得,,所以,即为平面的一个法向量.,同理可求得平面的一个法向量为所以所以二面角的正弦值为【点睛】本小题主要考查线面平行的证明,考查二面角的求法,考查空间想象能力和逻辑推理能力,属于中档题.19、(1)(2)证明见解析【解析】
(1)求出的导数,根据导函数的性质判断函数的单调性,再利用函数单调性解函数型不等式;(2)构造函数,利用导数判断在区间上单调递减,结合可得结果.【详解】(1)若,则.设,则,所以在上单调递减,在上单调递增.又当时,;当时,;当时,,所以所以在上单调递增,又,所以不等式的解集为.(2)设,再令,,在上单调递减,又,,,,,.即【点睛】本题考查利用函数的导数来判断函数的单调性,再利用函数的单调性来解决不等式问题,属于较难题.20、(Ⅰ);(Ⅱ)的发分布列为:X2060140400P0.70.10.150.05期望.【解析】
(Ⅰ)由表2可得去各个门诊的人次比例可得2000人中各个门诊的人数,即可知道去三甲医院的总人数,又有60岁所占的百分比可得60岁以上的人数,进而求出任选2人60岁以上的概率;(Ⅱ)由去各门诊结算的平均费用及表1所报的百分比可得随机变量的可能取值,再由概率可得的分布列,进而求出概率.【详解】解:(Ⅰ)由表2可得李村一个结算年度内去门诊就诊人次为2000人次,分别去村卫生室、镇卫生院、二甲医院、三甲医院人数为,,,,而三甲医院门诊就诊的人次中,60岁以上的人次占了,所以去三甲医院门诊就诊的人次中,60岁以上的人数为:人,设从去三甲医院门诊就诊的人次中任选2人次,恰好2人次都是60岁以上人次的事件记为,则;(Ⅱ)由题意可得随机变量的可能取值为:,,,,,,,,所以的发分布列为:X2060140400P0.70.10.150.05所以可得期望.【点睛】本题主要考查互斥事件、随机事件的概率计算公式、分布列及其数学期望、组合计算公式,考查了推理能力与计算能力,属于中档题.21、;.【解析】
连接,由三角形相似得,,进而得出,,写出椭圆的标准方程;由得,,因为直线与椭圆相切于点,,解得,,因为点在第二象限,所以,,所以,设直线与垂直交于点,则是点到直线的距离,设直线的方程为,则,求出面积的取值范围.【详解】解:连接,由可得,,,椭圆的标准方程;由得,,因为直线与椭圆相切于点,所以,即,解得,,即点的坐标为,因为点在第二象限,所以,,所以,所以点的坐标为,设直线与垂直交于点,则是点到直线的距离,设直线的方程为,则,当且仅当,即时,有最大值,所以,即面积的取值范围为.【点睛】本题考查直线和椭圆位置关系的应用,利用基本不等式,属于难题.22、(Ⅰ);(Ⅱ
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023年盐城市东台市教育系统毕业生招聘教师考试真题
- 2023年眉山教师招聘考试真题
- 中医药健康文化推进行动实施方案
- 小学四年级期末家长会发言稿
- 移动营业厅装饰装修工程施工组织设计方案
- 办公室主任培训班工作经验交流发言稿
- NF-κB-IN-17-生命科学试剂-MCE
- 美甲工具课程设计
- 大讲堂活动的实施方案
- 见证取样监理实施制度
- 红旗汽车介绍
- (高清版)DZT 0207-2020 矿产地质勘查规范 硅质原料类
- 项目管理培训资料(丰富版V2)
- 轨道就业指导
- 售后服务流程管理的关键因素
- 冀教版四年级上册数学第四单元 线和角 测试卷含完整答案(易错题)
- 《弘扬爱国精神 谱写青春赞歌》班会课件
- 心脏查体完整版本
- 2024年郑州铁路职业技术学院高职单招(英语/数学/语文)笔试历年参考题库含答案解析
- 南昌地铁公司招聘考试题目
- 2024年陕煤集团榆林化学有限责任公司招聘笔试参考题库含答案解析
评论
0/150
提交评论