2024届山东省济南育英中学高三第五次模拟考试数学试卷含解析_第1页
2024届山东省济南育英中学高三第五次模拟考试数学试卷含解析_第2页
2024届山东省济南育英中学高三第五次模拟考试数学试卷含解析_第3页
2024届山东省济南育英中学高三第五次模拟考试数学试卷含解析_第4页
2024届山东省济南育英中学高三第五次模拟考试数学试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东省济南育英中学高三第五次模拟考试数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,若恒成立,则满足条件的的个数为()A.0 B.1 C.2 D.32.我国古代数学著作《九章算术》中有如下问题:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一斗五升(注:一斗为十升).问,米几何?”下图是解决该问题的程序框图,执行该程序框图,若输出的S=15(单位:升),则输入的k的值为() A.45 B.60 C.75 D.1003.已知直线:与椭圆交于、两点,与圆:交于、两点.若存在,使得,则椭圆的离心率的取值范围为()A. B. C. D.4.已知a,b是两条不同的直线,α,β是两个不同的平面,且,,则“”是“”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件5.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍.其中记载有求“囷盖”的术:“置如其周,令相承也.又以高乘之,三十六成一”.该术相当于给出了由圆锥的底面周长与高,计算其体积的近似公式.它实际上是将圆锥体积公式中的圆周率近似取为3.那么近似公式相当于将圆锥体积公式中的圆周率近似取为()A. B. C. D.6.已知表示两条不同的直线,表示两个不同的平面,且则“”是“”的()条件.A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要7.下列与的终边相同的角的表达式中正确的是()A.2kπ+45°(k∈Z) B.k·360°+π(k∈Z)C.k·360°-315°(k∈Z) D.kπ+(k∈Z)8.已知角的顶点与原点重合,始边与轴的正半轴重合,终边经过点,则()A. B. C. D.9.将函数f(x)=sin3x-cos3x+1的图象向左平移个单位长度,得到函数g(x)的图象,给出下列关于g(x)的结论:①它的图象关于直线x=对称;②它的最小正周期为;③它的图象关于点(,1)对称;④它在[]上单调递增.其中所有正确结论的编号是()A.①② B.②③ C.①②④ D.②③④10.设是两条不同的直线,是两个不同的平面,则下列命题正确的是()A.若,,则 B.若,,则C.若,,,则 D.若,,,则11.将函数的图像向左平移个单位长度后,得到的图像关于坐标原点对称,则的最小值为()A. B. C. D.12.已知函数(),若函数有三个零点,则的取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数在处的切线与直线平行,则为________.14.如图,在复平面内,复数,对应的向量分别是,,则_______.15.在的展开式中,的系数等于__.16.过直线上一点作圆的两条切线,切点分别为,,则的最小值是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,,,,和均为边长为的等边三角形.(1)求证:平面平面;(2)求二面角的余弦值.18.(12分)某学校为了解全校学生的体重情况,从全校学生中随机抽取了100人的体重数据,得到如下频率分布直方图,以样本的频率作为总体的概率.(1)估计这100人体重数据的平均值和样本方差;(结果取整数,同一组中的数据用该组区间的中点值作代表)(2)从全校学生中随机抽取3名学生,记为体重在的人数,求的分布列和数学期望;(3)由频率分布直方图可以认为,该校学生的体重近似服从正态分布.若,则认为该校学生的体重是正常的.试判断该校学生的体重是否正常?并说明理由.19.(12分)在△ABC中,角A,B,C的对边分别是a,b,c,.(1)求cosC;(2)若b=7,D是BC边上的点,且△ACD的面积为,求sin∠ADB.20.(12分)为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,整理如下:甲公司员工:410,390,330,360,320,400,330,340,370,350乙公司员工:360,420,370,360,420,340,440,370,360,420每名快递员完成一件货物投递可获得的劳务费情况如下:甲公司规定每件0.65元,乙公司规定每天350件以内(含350件)的部分每件0.6元,超出350件的部分每件0.9元.(1)根据题中数据写出甲公司员工在这10天投递的快件个数的平均数和众数;(2)为了解乙公司员工每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为(单位:元),求的分布列和数学期望;(3)根据题中数据估算两公司被抽取员工在该月所得的劳务费.21.(12分)金秋九月,丹桂飘香,某高校迎来了一大批优秀的学生.新生接待其实也是和社会沟通的一个平台.校团委、学生会从在校学生中随机抽取了160名学生,对是否愿意投入到新生接待工作进行了问卷调查,统计数据如下:愿意不愿意男生6020女士4040(1)根据上表说明,能否有99%把握认为愿意参加新生接待工作与性别有关;(2)现从参与问卷调查且愿意参加新生接待工作的学生中,采用按性别分层抽样的方法,选取10人.若从这10人中随机选取3人到火车站迎接新生,设选取的3人中女生人数为,写出的分布列,并求.附:,其中.0.050.010.0013.8416.63510.82822.(10分)已知函数.(1)当时,求函数在处的切线方程;(2)若函数没有零点,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

由不等式恒成立问题分类讨论:①当,②当,③当,考查方程的解的个数,综合①②③得解.【详解】①当时,,满足题意,②当时,,,,,故不恒成立,③当时,设,,令,得,,得,下面考查方程的解的个数,设(a),则(a)由导数的应用可得:(a)在为减函数,在,为增函数,则(a),即有一解,又,均为增函数,所以存在1个使得成立,综合①②③得:满足条件的的个数是2个,故选:.【点睛】本题考查了不等式恒成立问题及利用导数研究函数的解得个数,重点考查了分类讨论的数学思想方法,属难度较大的题型.2、B【解析】

根据程序框图中程序的功能,可以列方程计算.【详解】由题意,.故选:B.【点睛】本题考查程序框图,读懂程序的功能是解题关键.3、A【解析】

由题意可知直线过定点即为圆心,由此得到坐标的关系,再根据点差法得到直线的斜率与坐标的关系,由此化简并求解出离心率的取值范围.【详解】设,且线过定点即为的圆心,因为,所以,又因为,所以,所以,所以,所以,所以,所以,所以.故选:A.【点睛】本题考查椭圆与圆的综合应用,着重考查了椭圆离心率求解以及点差法的运用,难度一般.通过运用点差法达到“设而不求”的目的,大大简化运算.4、C【解析】

根据线面平行的性质定理和判定定理判断与的关系即可得到答案.【详解】若,根据线面平行的性质定理,可得;若,根据线面平行的判定定理,可得.故选:C.【点睛】本题主要考查了线面平行的性质定理和判定定理,属于基础题.5、C【解析】

将圆锥的体积用两种方式表达,即,解出即可.【详解】设圆锥底面圆的半径为r,则,又,故,所以,.故选:C.【点睛】本题利用古代数学问题考查圆锥体积计算的实际应用,考查学生的运算求解能力、创新能力.6、B【解析】

根据充分必要条件的概念进行判断.【详解】对于充分性:若,则可以平行,相交,异面,故充分性不成立;若,则可得,必要性成立.故选:B【点睛】本题主要考查空间中线线,线面,面面的位置关系,以及充要条件的判断,考查学生综合运用知识的能力.解决充要条件判断问题,关键是要弄清楚谁是条件,谁是结论.7、C【解析】

利用终边相同的角的公式判断即得正确答案.【详解】与的终边相同的角可以写成2kπ+(k∈Z),但是角度制与弧度制不能混用,所以只有答案C正确.故答案为C【点睛】(1)本题主要考查终边相同的角的公式,意在考查学生对该知识的掌握水平和分析推理能力.(2)与终边相同的角=+其中.8、A【解析】

由已知可得,根据二倍角公式即可求解.【详解】角的顶点与原点重合,始边与轴的正半轴重合,终边经过点,则,.故选:A.【点睛】本题考查三角函数定义、二倍角公式,考查计算求解能力,属于基础题.9、B【解析】

根据函数图象的平移变换公式求出函数的解析式,再利用正弦函数的对称性、单调区间等相关性质求解即可.【详解】因为f(x)=sin3x-cos3x+1=2sin(3x-)+1,由图象的平移变换公式知,函数g(x)=2sin[3(x+)-]+1=2sin(3x+)+1,其最小正周期为,故②正确;令3x+=kπ+,得x=+(k∈Z),所以x=不是对称轴,故①错误;令3x+=kπ,得x=-(k∈Z),取k=2,得x=,故函数g(x)的图象关于点(,1)对称,故③正确;令2kπ-≤3x+≤2kπ+,k∈Z,得-≤x≤+,取k=2,得≤x≤,取k=3,得≤x≤,故④错误;故选:B【点睛】本题考查图象的平移变换和正弦函数的对称性、单调性和最小正周期等性质;考查运算求解能力和整体代换思想;熟练掌握正弦函数的对称性、单调性和最小正周期等相关性质是求解本题的关键;属于中档题、常考题型10、C【解析】

根据空间中直线与平面、平面与平面位置关系相关定理依次判断各个选项可得结果.【详解】对于,当为内与垂直的直线时,不满足,错误;对于,设,则当为内与平行的直线时,,但,错误;对于,由,知:,又,,正确;对于,设,则当为内与平行的直线时,,错误.故选:.【点睛】本题考查立体几何中线面关系、面面关系有关命题的辨析,考查学生对于平行与垂直相关定理的掌握情况,属于基础题.11、B【解析】

由余弦的二倍角公式化简函数为,要想在括号内构造变为正弦函数,至少需要向左平移个单位长度,即为答案.【详解】由题可知,对其向左平移个单位长度后,,其图像关于坐标原点对称故的最小值为故选:B【点睛】本题考查三角函数图象性质与平移变换,还考查了余弦的二倍角公式逆运用,属于简单题.12、A【解析】

分段求解函数零点,数形结合,分类讨论即可求得结果.【详解】作出和,的图像如下所示:函数有三个零点,等价于与有三个交点,又因为,且由图可知,当时与有两个交点,故只需当时,与有一个交点即可.若当时,时,显然𝑦=𝑓(𝑥)与𝑦=4|𝑥|有一个交点𝐵,故满足题意;时,显然𝑦=𝑓(𝑥)与𝑦=4|𝑥|没有交点,故不满足题意;时,显然𝑦=𝑓(𝑥)与𝑦=4|𝑥|也没有交点,故不满足题意;时,显然与有一个交点,故满足题意.综上所述,要满足题意,只需.故选:A.【点睛】本题考查由函数零点的个数求参数范围,属中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

根据题意得出,由此可得出实数的值.【详解】,,直线的斜率为,由于函数在处的切线与直线平行,则.故答案为:.【点睛】本题考查利用函数的切线与直线平行求参数,解题时要结合两直线的位置关系得出两直线斜率之间的关系,考查计算能力,属于基础题.14、【解析】试题分析:由坐标系可知考点:复数运算15、7【解析】

由题,得,令,即可得到本题答案.【详解】由题,得,令,得x的系数.故答案为:7【点睛】本题主要考查二项式定理的应用,属基础题.16、【解析】

由切线的性质,可知,切由直角三角形PAO,PBO,即可设,进而表示,由图像观察可知进而求出x的范围,再用的式子表示,整理后利用换元法与双勾函数求出最小值.【详解】由题可知,,设,由切线的性质可知,则显然,则或(舍去)因为令,则,由双勾函数单调性可知其在区间上单调递增,所以故答案为:【点睛】本题考查在以直线与圆的位置关系为背景下求向量数量积的最值问题,应用函数形式表示所求式子,进而利用分析函数单调性或基本不等式求得最值,属于较难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见证明;(2)【解析】

(1)取的中点,连接,要证平面平面,转证平面,即证,即可;(2)以为坐标原点,以为轴正方向,建立如图所示的空间直角坐标系,分别求出平面与平面的法向量,代入公式,即可得到结果.【详解】(1)取的中点,连接,因为均为边长为的等边三角形,所以,,且因为,所以,所以,又因为,平面,平面,所以平面.又因为平面,所以平面平面.(2)因为,为等边三角形,所以,又因为,所以,,在中,由正弦定理,得:,所以.以为坐标原点,以为轴正方向,建立如图所示的空间直角坐标系,则,,,,,设平面的法向量为,则,即,令,则平面的一个法向量为,依题意,平面的一个法向量所以故二面角的余弦值为.【点睛】空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.18、(1)60;25(2)见解析,2.1(3)可以认为该校学生的体重是正常的.见解析【解析】

(1)根据频率分布直方图可求出平均值和样本方差;(2)由题意知服从二项分布,分别求出,,,,进而可求出分布列以及数学期望;(3)由第一问可知服从正态分布,继而可求出的值,从而可判断.【详解】解:(1)(2)由已知可得从全校学生中随机抽取1人,体重在的概率为0.7.随机拍取3人,相当于3次独立重复实验,随机交量服从二项分布,则,,,,所以的分布列为:01230.0270.1890.4410.343数学期望(3)由题意知服从正态分布,则,所以可以认为该校学生的体重是正常的.【点睛】本题考查了由频率分布直方图求进行数据估计,考查了二项分布,考查了正态分布.注意,统计类问题,如果题目中没有特殊说明,则求出数据的精度和题目中数据的小数后位数相同.19、(1);(2).【解析】

(1)根据诱导公式和二倍角公式,将已知等式化为角关系式,求出,再由二倍角余弦公式,即可求解;(2)在中,根据面积公式求出长,根据余弦定理求出,由正弦定理求出,即可求出结论.【详解】(1),,;(2)在中,由(1)得,,由余弦定理得,,在中,,.【点睛】本题考查三角恒等变换求值、面积公式、余弦定理、正弦定理解三角形,考查计算求解能力,属于中档题.20、(1)平均数为360,众数为330;(2)见详解;(3)甲公司:7020(元),乙公司:7281(元)【解析】

(1)将图中甲公司员工A的所有数据相加,再除以总的天数10,即可求出甲公司员工A投递快递件数的平均数.从中发现330出现的次数最多,故为众数;(2)由题意能求出的可能取值为340,360,370,420,440,分别求出相对应的概率,由此能求出的分布列和数学期望;(3)利用(1)(2)的结果,可估算两公司的每位员工在该月所得的劳务费.【详解】解:(1)由题意知甲公司员工在这10天投递的快递件数的平均数为.众数为330.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论