版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省绍兴市建功中学高三数学理模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.以下有关命题的说法错误的是(
)A.命题“若”的逆否命题为“若B.“”是“”的充分不必要条件C.若为假命题,则p、q均为假命题D.对于命题p:参考答案:【知识点】四种命题的意义;充分、必要条件的意义;判断复合命题真假的真值表;含量词的命题的否定方法.A2
A3【答案解析】C
解析:对于选项C:可以一真一假,故C说法错误;其它选项显然正确.【思路点拨】利用四种命题的意义,充分、必要条件的意义,判断复合命题真假的真值表,含量词的命题的否定方法,判断各命题的真假.2.若变量满足约束条件,则的最大值是(
)A、12
B、26
C、28
D、33
参考答案:C如图可行域为图中阴影部分,当目标函数直线经过点M时有最大值,联立方程组得,代入目标函数得,故选C.3.函数的图象为,①图象关于直线对称;②函数在区间内是增函数;③由的图象向右平移个单位长度可以得到图象,以上三个论断中,正确论断的个数是
(
)A.0
B.1
C.2
D.3参考答案:C略4.曲线在点处的切线与坐标轴所围三角形的面积为()A. B. C. D.参考答案:A略5.若,则下列不等式成立的是(
)A.
B.
C.
D.参考答案:D6.函数的定义域为(
)A.B.
C.
D.参考答案:C略7.已知等差数列与等比数列各项都是正数,且,,那么一定有(
)A、
B、
C、
D、参考答案:B8.某班班会准备从甲、乙等7名学生中选派4名学生发言,要求甲、乙两名同学至少有一人参加,且若甲乙同时参加,则他们发言时不能相邻.那么不同的发言顺序种数为()A.360B.520C.600D.720参考答案:C考点:排列、组合的实际应用.专题:计算题.分析:根据题意,分2种情况讨论,①只有甲乙其中一人参加,②甲乙两人都参加,由排列、组合计算可得其符合条件的情况数目,由加法原理计算可得答案.解答:解:根据题意,分2种情况讨论,若只有甲乙其中一人参加,有C21?C53?A44=480种情况;若甲乙两人都参加,有C22?C52?A44=240种情况,其中甲乙相邻的有C22?C52?A33?A22=120种情况;则不同的发言顺序种数480+240﹣120=600种,故选C.点评:本题考查组合的应用,要灵活运用各种特殊方法,如捆绑法、插空法.9.若是定义在R上的偶函数,在上是减函数,且,则使得的的取值范围是(
)A.(0,4)
B.
C.
D.参考答案:答案:D10.原命题为“若互为共轭复数,则”,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是(
) (A)真,假,真
(B)假,假,真
(C)真,真,假
(D)假,假,假参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.已知x=11,则=
.参考答案:12.已知数列满足(,,且为常数),若为等比数列,且首项为,则的通项公式为________________.参考答案:或①若,则,由,得,由,得,联立两式,得或,则或,经检验均合题意.②若,则,由,得,得,则,经检验适合题意.综上①②,满足条件的的通项公式为或.13.下面四个命题:①函数的图象必经过定点(0,1);②已知命题:,则:;③过点且与直线垂直的直线方程为;④在区间上随机抽取一个数,则的概率为。其中所有正确命题的序号是:_____________。参考答案:①③当时,,所以恒过定点,所以①正确;命题的否定为:,所以②错误;直线的斜率为,所以和垂直的直线斜率为,因为直线过点,所以所求直线方程为,即,所以③正确;由得,,所以相应的概率为,所以④错误,所以正确的命题有①③。14.若函数上存在单调递增区间,则a的取值范围是
参考答案:.当时,的最大值为,令,解得,所以a的取值范围是15.已知圆与圆相交于两点,且满足,则
▲
.参考答案:两圆公共弦所在直线方程为,设其中一圆的圆心为.∵,∴,∴,得.
16..若函数的定义域为,值域为,则的取值范围是
.参考答案:
13、从名骨科、名脑外科和名内科医生中选派人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有人的选派方法种数是___________(用数字作答)参考答案::三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.平面直角坐标系中,直线的参数方程是(为参数),以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,已知曲线的极坐标方程为.(Ⅰ)求直线的极坐标方程;(Ⅱ)若直线与曲线相交于、两点,求.参考答案:解:(Ⅰ)消去参数得直线的直角坐标方程:---------2分由代入得.(也可以是:或)---------------------5分(Ⅱ)
得-----------------------------7分设,,则.---------10分19.已知函数.(1)若函数在处取得极值,求a的值;(2)在(1)的条件下,求证:.参考答案:(1);(2)见解析.(1),由题意可得,解得.经检验,时在处取得极值,所以.(2)证明:由(1)知,,令,由,可知在上是减函数,在上是增函数,所以,所以成立.20.(本题满分14分)如图,在中,,斜边.可以通过以直线为轴旋转得到,且二面角是直二面角.动点的斜边上。(I)求证:平面平面;(II)当为的中点时,求异面直线与所成角的大小;(III)求与平面所成角的最大值。参考答案:(I)由题意,,,是二面角是直二面角,又二面角是直二面角,,(2分)又,平面,又平面,平面平面.(4分)(II)作,垂足为,连结(如图),则,是异面直线与所成的角.(1分)在中,,,.又.(2分)在中,.(3分)异面直线与所成角的大小为.(4分)(III)由(I)知,平面,是与平面所成的角,且.当最小时,最大,(3分)这时,,垂足为,,,与平面所成角的最大值为.(6分)21.(本题共13分)如图,三棱柱中,平面ABC,ABBC,点M,N分别为A1C1与A1B的中点.(Ⅰ)求证:MN平面BCC1B1;(Ⅱ)求证:平面A1BC平面A1ABB1.参考答案:解:(Ⅰ)连结BC1∵点M,N分别为A1C1与A1B的中点,∴∥BC1.........................................................4分∵,∴MN∥平面BCC1B1.........................................6分
(Ⅱ)∵,
平面,∴.......................................................................................................9分又∵ABBC,,∴........................................................................................12分∵,∴平面A1BC平面A1ABB1................................................................................13分22.(本题满分12分)如图,已知抛物线的焦点在抛物线上,点是抛物线上的动点.(I)求抛物线的方程及其准线方程;(II)过点作抛物线的两条切线,、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广州体育职业技术学院《营养与食品卫生学》2023-2024学年第一学期期末试卷
- 2025年海南省建筑安全员《C证》考试题库
- 2025四川省建筑安全员《A证》考试题库
- 民航英语口语总复习课件
- 【大学课件】官方单据公务证书
- 专利申请实务
- 最小公倍数 比较课件
- 小古文-大禹治水课件
- 《展览品牌策划》课件
- 2025年中国男裤行业市场前景预测及投资战略研究报告
- PPT中国地图素材(可修改颜色)
- 2023年深国交入学考试英语模拟试题
- 2022年中国农业银行(广东分行)校园招聘笔试试题及答案解析
- 品牌管理第五章品牌体验课件
- 基于CAN通讯的储能变流器并机方案及应用分析报告-培训课件
- 保姆级别CDH安装运维手册
- 菌草技术及产业化应用课件
- GB∕T 14527-2021 复合阻尼隔振器和复合阻尼器
- 隧道二衬、仰拱施工方案
- 颤病(帕金森病)中医护理常规
- 果胶项目商业计划书(模板范本)
评论
0/150
提交评论