湖南省衡阳市 市第三中学高二数学文上学期摸底试题含解析_第1页
湖南省衡阳市 市第三中学高二数学文上学期摸底试题含解析_第2页
湖南省衡阳市 市第三中学高二数学文上学期摸底试题含解析_第3页
湖南省衡阳市 市第三中学高二数学文上学期摸底试题含解析_第4页
湖南省衡阳市 市第三中学高二数学文上学期摸底试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省衡阳市市第三中学高二数学文上学期摸底试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知椭圆上有三点(,)(1,2,3),它们到同一个焦点的距离分别是,,,则,,成等差数列的充要条件是(

A.,,成等差数列

B.,,成等差数列

C.上述(A)、(B)同时成立

D.(A)、(B)以外的条件参考答案:B2.直线的倾斜角为

)A.30

B.60

C.120

D.150参考答案:C略3.已知向量=(1,2),

=(x,1),若//,则x=(

)A、-2

B、-

C、

D、2参考答案:C4.某程序的框图如图所示,则运行该程序后输出的的值是(

)A.B.C.D.参考答案:A5.下列说法正确的是()A.若a<b,则am2<bm2.B.命题“p或q”为真,且“p”为真,则q可真可假.C.原命题“若x=2,则x2=4”,此命题的否命题为真命题.D.命题“?x∈R使得2x<1“的否定是:“?x∈R均有2x>1”.参考答案:B【考点】命题的真假判断与应用.【分析】A,当m2=0时,则am2=bm2.B,命题“p或q”为真,且“p”为真,则q可真可假.C,原命题“若x=2,则x2=4”,此命题的否命题为:若x≠2,则x2≠4,此命题为假命题.D,命题“?x∈R使得2x<1“的否定是:“?x∈R均有2x≥1”.【解答】解:对于A,当m2=0时,则am2=bm2.故错.对于B,命题“p或q”为真,且“p”为真,则q可真可假.正确.对于C,原命题“若x=2,则x2=4”,此命题的否命题为:若x≠2,则x2≠4,此命题为假命题.故错对于D,命题“?x∈R使得2x<1“的否定是:“?x∈R均有2x≥1”故错.故选:B6.设椭圆()的离心率,右焦点,方程的两个根分别为,,则点在(

)A.圆内

B.圆上

C.圆外

D.以上都有可能参考答案:A略7.已知f(x)=x2-cosx,x∈[-1,1],则导函数f′(x)是()A.仅有最小值的奇函数B.既有最大值,又有最小值的偶函数C.仅有最大值的偶函数D.既有最大值,又有最小值的奇函数参考答案:D8.已知随机变量X满足D(X)=2,则D(3X+2)=()A.2

B.8C.18

D.20参考答案:C略9.已知等差数列中,,,则前项的和等于

参考答案:C设等差数列的公差为,则,,所以,故选.

10.某校对高一新生的体重进行了抽样调查,如图是根据抽样调查后的数据绘制的频率分布直方图,其中体重(单位:kg)的范围是,样本数据分组为,,,,,已知被调查的学生中体重不足55kg的有36人,则被调查的高一新生体重在kg的人数是(

)A.90 B.75 C.60 D.45参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.如图所示,在棱长为2的正方体ABCD﹣A1B1C1D1中,O是底面ABCD的中心,E、F分别是CC1,AD的中点,那么异面直线OE和FD1所成角的余弦值等于.参考答案:【考点】异面直线及其所成的角.【分析】取BC的中点G.连接GC1,则GC1∥FD1,再取GC的中点H,连接HE、OH,则∠OEH为异面直线所成的角,在△OEH中,利用余弦定理可得结论.【解答】解:取BC的中点G.连接GC1,则GC1∥FD1,再取GC的中点H,连接HE、OH,则∵E是CC1的中点,∴GC1∥EH∴∠OEH为异面直线所成的角.在△OEH中,OE=,HE=,OH=.由余弦定理,可得cos∠OEH===.故答案为:12.只用1,2,3三个数字组成一个四位数,规定这三个数必须都用上,且相同数字不能相邻,这样的四位数有__________个.参考答案:1813.如图,是水平放置的直观图,O'A'=3,O'B'=2,则三角形OAB的面积是

。参考答案:614.如图,ABCD-A1B1C1D1为正方体,下面结论中正确的是________.(把你认为正确的结论都填上)①BD∥平面CB1D1;②AC1⊥平面CB1D1;③AC1与底面ABCD所成角的正切值是;④二面角C—B1D1-C1的正切值是;⑤过点A1与异面直线AD与CB1成70°角的直线有2条.参考答案:①②④15.从棱长为3的正四面体的各顶点截去四个棱长为1的小正四面体(使截面平行于底面),所得几何体的表面积是

.参考答案:16.已知函数,则的值为_________。参考答案:217.一个四棱锥的侧棱长都相等,底面是正方形,其正视图如图所示,则该四棱锥的侧面积是_________.参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(16分)已知函数f(x)=lnx+ax2(x>0),g(x)=bx,其中a,b是实数.(1)若a=﹣,求f(x)的最大值;(2)若b=2,且直线y=g(x)﹣是曲线y=f(x)的一条切线,求实数a的值;(3)若a<0,且b﹣a=,函数h(x)=f(x)﹣g(2x)有且只有两个不同的零点,求实数a的取值范围.参考答案:【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【分析】(1)求出函数的导数,解关于导函数的方程,求出函数的单调区间,从而求出函数的最值问题;(2)设出切点坐标,表示出切线方程,得到lnx0﹣x0+1=0,设t(x)=lnx﹣x+1,x>0,根据函数的单调性求出a的值即可;(3)通过讨论a的范围,求出函数的单调性,结合函数h(x)=f(x)﹣g(2x)有且只有两个不同的零点,求出a的范围即可.【解答】解:(1)由题意,,x>0,∴,令f'(x)=0,x=1,…(2分)x(0,1)1(1,+∞)f'(x)+0﹣f(x)↗↘从上表可知,当x=1时,f(x)取得极大值,且是最大值,∴f(x)的最大值是.…(2)由题意,直线是曲线y=lnx+ax2的一条切线,设切点,∴切线的斜率为,∴切线的方程为,即,∴…(6分)∴lnx0﹣x0+1=0,设t(x)=lnx﹣x+1,x>0,∴,当x∈(0,1)时,t'(x)>0,当x∈(1,+∞)时,t'(x)<0,∴t(x)在x=1处取得极大值,且是最大值,∴t(x)max=t(1)=0,∵t(x0)=0,∴x0=1,此时.

…(10分)(3)∵,∴,x>0,∴,(ⅰ)当﹣1≤a≤0时,当0<x<1时,h'(x)>0,当x>1时,h'(x)<0,∴函数h(x)在x=1处取得极大值,且是最大值,∴h(x)≤h(1)=﹣1,函数h(x)在区间(0,+∞)上无零点,…(12分)(ⅱ)当a<﹣1时,令h'(x)=0,得,x2=1,由(2)可知,t(x)≤0,即lnx≤x﹣1,∴,其中,又h(1)=﹣a﹣1>0,且函数h(x)在(0,1)上不间断,∴函数h(x)在(0,1)上存在零点,另外,当x∈(0,1)时,h'(x)<0,故函数h(x)在(0,1)上是单调减函数,∴函数h(x)在(0,1)上只有一个零点,∵h(2)=ln2+a×22﹣(2a+1)×2=ln2﹣2<0,又h(1)=﹣a﹣1>0,且函数h(x)在(1,+∞)上不间断,∴函数h(x)在(1,+∞)上存在零点,另外,当x∈(1,+∞)时,h'(x)>0,故函数h(x)在(1,+∞)上是单调增函数,∴函数h(x)在(1,+∞)上只有一个零点,∴当﹣1≤a≤0时,h(x)在区间(0,+∞)上无零点,当a<﹣1时,h(x)在区间(0,+∞)上恰有2个不同的零点,综上所述,实数a的取值范围是(﹣∞,﹣1).

…(16分)【点评】本题考查了切线方程问题,考查函数的单调性、最值问题,考查导数的应用以及分类讨论思想,是一道综合题.19.在四棱锥P—ABCD中,底面ABCD是一直角梯形,,∥,,,底面,与底面成30°角.(1)若于点,求证:;(2)求平面PAB与平面PCD夹角的正切值.参考答案:(1)如图建立空间直角坐标系,则,,,,,,∴,,∴,∴

…………5分(2)易知,则平面,∴是平面的一个法向量,∴,又设平面的一个法向量为,则,,而,∴由,得,解得,令,∴,设平面PAB与平面PCD夹角为,则,∴.∴平面PAB与平面PCD夹角的正切值为2.…………12分略20.抛物线C:y2=2px(p>0)的焦点为F,抛物线C上点M的横坐标为1,且|MF|=.(Ⅰ)求抛物线C的方程;(Ⅱ)过焦点F作两条相互垂直的直线,分别与抛物线C交于M、N和P、Q四点,求四边形MPNQ面积的最小值.参考答案:【考点】抛物线的简单性质.【分析】(Ⅰ)利用抛物线的定义直接求抛物线C的方程;(Ⅱ)过焦点F作两条相互垂直的直线,设MN:x=my+,PQ:x=﹣y+(m≠0),联立直线与抛物线方程组成方程组,利用弦长公式,求出MN,PQ,推出四边形MPNQ的面积的表达式,利用基本不等式求四边形MPNQ面积的最小值.【解答】解:(Ⅰ)由已知:1+=,∴p=故抛物线C的方程为:y2=x…(Ⅱ)由(Ⅰ)知:F(,0)设MN:x=my+,PQ:x=﹣y+(m≠0)…由得:y2﹣my﹣=0∵△=m2+1>0∴|MN|==m2+1…同理:|PQ|=+1….∴四边形MPNQ的面积:S=(m2+1)(+1)=(2++m2)≥2(当且仅当m=±1时等号成立)∴四边形MPNQ的面积的最小值为2.…21.如图,在多面体ABCDEF中,ABCD是正方形,AB=2EF=2,,EF⊥FB,∠BFC=,BF=FC,H为BC的中点.(1)求证:平面EDB;(2)求证:AC⊥平面EDB;(3)求四面体B—DEF的体积.

参考答案:略22.设函数f(x)=lnx﹣ax,a∈R.(1)当x=1时,函数f(x)取得极值,求a的值;(2)当a>0时,求函数f(x)在区间[1,2]的最大值;(3)当a=﹣1时,关于x的方程2mf(x)=x2(m>0)有唯一实数解,求实数m的值.参考答案:解:(1)f(x)的定义域为(0,+∞),所以f′(x)=﹣a=.

因为当x=1时,函数f(x)取得极值,所以f′(1)=1﹣a=0,所以a=1.经检验,a=1符合题意.(不检验不扣分)

(2)f′(x)=﹣a=,x>0.令f′(x)=0得x=.因为x∈(0,)时,f′(x)>0,x∈(,+∞)时,f′(x)<0,所以f(x)在(0,)递增,在(,+∞)递减,①当0<≤1,即a≥1时,f(x)在(1,2)上递减,所以x=1时,f(x)取最大值f(1)=﹣a;②当1<<2,即<a<1时,f(x)在(1,)上递增,在(,2)上递减,所以x=时,f(x)取最大值f()=﹣lna﹣1;③当≥2,即0<a≤时,f(x)在(1,2)上递增,所以x=2时,f(x)取最大值f(2)=ln2﹣2a.综上,①当0<a≤时,f(x)最大值为ln2﹣2a;②当<a<1时,f(x)最大值为﹣lna﹣1;③当a≥1时,f(x)最大值为﹣a.

(3)因为方程2mf(x)=x2有唯一实数解,所以x2﹣2mlnx﹣2mx=0有唯一实数解,设g(x)=x2﹣2mlnx﹣2mx,则g′(x)=,令g′(x)=0,x2﹣mx﹣m=0.因为m>0,x>0,所以x1=<0(舍去),x2=,当x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论