版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Combustionmodellingsolutionsforalternativefuels
MOBEXWebinar
MichaelRieß,April2024
Content
Introductionandstatuscombustionmodeldevelopmentforalternativefuels
InsightIAV´shydrogencombustionmodel
ApplicationexamplesforIAV´sH2-ICEcombustionmodel
Conclusionandoutlook
Introductionandstatuscombustionmodeldevelopmentfor
alternativefuels
Ventilhub
DetailedConceptDesign
ConceptEvaluation
1654
495
2000
4000
3000
3500
07
4000
4500
4000
3500
3000
2500
2000
1500
4000
3500
3000
2500
2000
1500
1000
0D/1D
3000
3000
2500
2500
2ndVirtualPrototypeLayout
540。KW720
90180270
360450
Col1
3
Combustionmodellingsolutionsforalternativefuels
OverarchingICEdevelopmentprocess
Pre-ConceptLayout
BasedonTargetsand/or
SystemLevel
outputPowertrain
ComponentLevel
Synthesis
CombustionProcess
Injector/Port…
FuelEffects
Knocking&
RawEmissions
4500
4500
4500
Simulation
Submodels
SubsystemLevel
Charging&
In-Cylinder
Flow
EAT
developedbyIAV
CombustionDesignwith
HighFidelity3DCFD
GasExchange
&Valvetrain
1stVirtualPrototypeLayout
4IAV04/2024TD-F3mrßStatus:draft,public
Combustionmodellingsolutionsforalternativefuels
Overview/selectedfuelsforICEapplications
Proprietarymodelsavailable(1D)
Developmentofmodelsongoing
Usingcommercialmodels
5IAV04/2024TD-F3mrßStatus:draft,public
SI
homogeneous
SI
stratified
CI
DFhomogeneous
CI
DFstratified
CI
DFdoublediffusive
Available/validated
Notyet
Available/validated
Notyet
Notyet
Available/validationongoing
Notyet
Workinprogress
Notyet
Notyet
Workinprogress
Notyet
Planned
Notyet
Notyet
CombustionmodellingsolutionsforalternativefuelsStatusandnextsteps
H2
CH3OH
NH3
BasicInjectionSystem
IgnitionSystem
AdvancedInjectionSystem
PilotfuelinjectionSystem
6IAV04/2024TD-F3mrßStatus:draft,public
InsightIAV´shydrogencombustionmodel
Validation/
Calibration
Parametrization
(burnrate,in/expressure)
Inalldevelopmentlevels,IAVaimsatemployingownphenomenologicalmodelsthatenablepredictive
simulationofsystem
behavior,e.g.
−Ignition
−Knock
−Flamespeed/burnrate
−Engine–outemissions
−Tailpipeemissions
Validationofassumptionsandsimulationresultson
alllevels(specific
componenttestingorin-
situexperiments)ispartofIAV´sdevelopmentprocess
SystemLevel
SubsystemLevel
Virtual
Highfidelity3DCFD
Drivingdesigniterationsforcombustionimprovement
1DSimulation
Validation
Validation
SingleCylinderEngine
Experimental
CombustionmodellingsolutionsforalternativefuelsDevelopmentprocessforH2ICE
ComponentLevel
Initial0D/1D/3DCFD
IAVH2KnockPrediction
IAVH2LaminarFlameSpeedModel
EOemissionsmodel
Validation/Calibration
H2EngineDynos
660kW/pH2≤100barpressure
bomb,RCM,vessel
combustion
spray
RapidPrototypingbymeansof3Dprint,e.g.pistonsandcylinderheads
8IAV04/2024TD-F3mrßStatus:draft,public
Combustionmodellingsolutionsforalternativefuels
IAV’sPhenomenologicalHydrogenSICombustionModel
•IAV’sH2combustionmodeldevelopedbasedondetailedchemicalkineticssimulation
•IAV’sphenomenologicalH2combustionmodelincludesdedicatedsubmodelstoconsidermostfuel-specificeffects
1.Laminarflamespeedmodel
Dedicatedapproachforhydrogenlaminarflamespeedsdevelopedbasedondetailedreactionkineticsimulationsandconsideringallrelevantboundaryconditions
(Lambdaupto4,EGRratesofupto50%,pressureofupto250barandentirerelevantunburntgastemperaturerange)
2.Auto-ignitionmodelforthepredictionofknock,capableofconsideringtheeffectofmixtureinhomogeneities
Basedonthewidely-usedLivengood-Wuintegralrepresentingthedegreeofchemicalreactionsintheunburnedmixtureresultinginknock:
C
;A,B,C=f(T,p,λ,EGR)
Parametersfittedbasedonignitiondelaytimesimulationswithdetailedreactionkinetics
Theignitiondelaytimesτarecalculatedwithahydrogen-dedicatedArrhenius-type
equation:
t=te
1=න
t=0
dt
τ=A∙e
1000T
B
IAV’sH2combustionmodeliswidelypublished,e.g.Rezaei,R.,Hayduk,C.,Fandakov,A.,Rieß,M.etal.,“NumericalandExperimentalInvestigationsofHydrogenCombustionforHeavy-DutyApplications,”SAETechnicalPaper2021-01-0522
9IAV04/2024TD-F3mrßStatus:draft,public
CombustionmodellingsolutionsforalternativefuelsValidationresultsofIAV´spremixedH2combustionmodel
FocusofIAV´sproprietaryH2combustionmodel
•H2laminarflamevelocityunderallrelevantboundaryconditions(T,p,lambda,EGR)withpcylupto250bar,lambdaupto4,EGRupto50%
•Asemi-empiricmodeltopredictresidualH2
•Akineticmodeltopredictauto-ignitionandengineknockwithboundariessimilartolaminarflamespeed
ValidationbasisonaperfectlypremixedH2-ICE
•Lambdafrom1.6…3.6,cooledEGRfrom0…30%
•Indicatedmeaneffectivepressurefrom5-22bar
•Enginespeedfrom900-1900rpm
10IAV04/2024TD-F3mrßStatus:draft,public
SimulatedSimulated
SimulatedSimulated
SimulatedSimulated
SimulatedSimulated
Prediction:Auto-IgnitionModel
3
bar
I
EP720
±5%in
bar
M
5%
T
otalEGR
Rate±5
%(relati
ve)in%
MaximumPressure±5%inbar
16
14
12
10
8
4。CA
MF
10-MFB7
BurnDu5±3。CA
rationin。CA
PredictionofAuto-Ignition
5。CA
SparkTiming±3。CAin。CAaFTDC
CombustionmodellingsolutionsforalternativefuelsValidationresultsofIAV´spremixedH2combustionmodel
PredictionofCombustionCharacteristics
Measured
Measured
0
.3
λ±5%
in-
Measured
5
g/kWh
BSF
C±5
%in
g/kW
h
Measured
a
20br
Measured
Measured
3
。CA
M
FB50
±3。
CAin
。CA
aFTD
C
Measured
6
4
2
0
B
Measured
Crank
Anglea
tAuto-I
gnition
±1。CAi
n。CA
0246810121416
Simulation:ReactionKineticMechanism
IAV’scustomcombustionmodelcanaccuratelypredictallrelevanthydrogencombustioncharacteristicsaswellasauto-ignitionintheunburntmass
11IAV04/2024TD-F3mrßStatus:draft,public
Combustionmodellingsolutionsforalternativefuels
λ:2.0
ValidationresultsofIAV´spremixedH2combustionmodel
1316rpm/20barIMEP
Ext.EGR:0%
PFI-perfectlyhomogeneousmixture
RobustH2combustionwithgoodrunningstabilityachievedatlambda2.0;knocklimitfoundat3。CA
12IAV04/2024TD-F3mrßStatus:draft,public
KnockPropensityIntegral/1=te
•Validationofpredictedcombustionphasing(MFB50)attheknocklimitwithaconstantcalibrationparameter
value
•Asatisfactoryresultisachievedwithamax.MFB50-deviationof2°CA(OP6)
CombustionmodellingsolutionsforalternativefuelsValidationresultsofIAV´spremixedH2combustionmodel-autoignition
MFB50SensitivityAnalysisonKnockPropensity@1316rpm/20barIMEP
MFB50~2°CA
ValidationofpredictedMFB50-points
•Generaleffectofcombustionphasingonknockpropensityisaccuratelyrepresentedbythephenomenologicalmodel
•Theknocksimulationmodelreliesonthecombustion
characteristicspredictedbyIAV’shydrogencombustionmodel
13IAV04/2024TD-F3mrßStatus:draft,public
CombustionmodellingsolutionsforalternativefuelsChallengeswithH2duetoinhomogeneities
•SufficientmixturepreparationisthemostcrucialissuewithH2-ICE
•BeneficialdiffusionbehaviourofH2comparedtootherfuelsplayaratherminorroleduetotherelevanttimescales.
•Insufficienthomogeneitydeliverspoorcombustion-andemissionsperformance.
•H2featuresfastcombustionevenindiluted/leanconditions
•Whilethisfastcombustionisbeneficialforefficiencyandcombustionstability,itcreateshightemperature
•Minimumgloballambdainthemapshallbearound~2withonlysmalllocaldeviations(s(λ)<0.1)inordertoavoidNOxcreation
•FasterH2combustionleadstoincreasedpcylandTcylcomparedtogasoline
•Ultimately,highpandTleadtodrasticallyreducedignitiondelayauto-ignition
•Dilution(air/EGR)mitigatesthisissueandenableoperationathigherspecpower
•Poorhomogeneityandrichspotsneedtobeavoided(PI,Knock,Backfire)
14IAV04/2024TD-F3mrßStatus:draft,public
CFDResultLambda
•Injection
•Flow
•Geometry
•Timing
•IAVphenomenologicalcombustionmodel:
•Gasexchange,charging
•Strategy/optimization
lean
rich
-3D
IAV1DLink
Input:CFDresultor“worst
case”assumption
CombustionmodellingsolutionsforalternativefuelsConsiderationofinhomogeneitiesforauto-ignitionprediction
Maindriverforknockandpre-ignitionphenomenaarelocalinhomogeneitiesconcerningtemperatureandlambdadistribution
1DSimulation
hot
likerichzonesandinfluenceof
IAV1Dauto-ignitionmodeliscapabletotakelocalinhomogeneities
plug,
spots(spark
exhaustvalve)intoaccount:
Combustioncalculationwitha“global”enginelambda(two-zonecalculationwiththeentrainmentmodel)
Auto-ignitioncalculationwithLivengood-Wuintegralrepresentingthedegreeofchemicalreactions(pre-
reactions)intheunburnedzone:
Auto-Ignitionpredictionbasedonalocalrichlambdazone
Auto-Ignitionpredictionconsideringalocaltemperatureofahotspot
IAVphenomenological1Dcombustionmodeliscapabletoconsidertolocalinhomogeneitiesoflambdaand
temperatureforauto-ignitionandknockprediction
15IAV04/2024TD-F3mrßStatus:draft,public
CombustionmodellingsolutionsforalternativefuelsConsiderationofinhomogeneitiesforauto-ignition
•IAV’sproprietaryhydrogencombustionmodel
packageenablesthepredictive0D/1Dsimulationofhydrogencombustion,knockpropensityand
NOxemissions
•H2-modelscanbeusedforbothsteady-stateandtransientsimulations
•DedicatedGUIformodelparametrizationthatcanbeembeddedintoanyenginemodel
•FullyintegratedresultoutputinGT-POST
•H2-modelscompatiblewithallGT-POWER
versionsafterV2016andavailablefordifferentoperatingsystems
16IAV04/2024TD-F3mrßStatus:draft,public
Auto-ignat0%MFB(-3°CA)
Pre-ignition
Auto-ignat0%MFB(0°CA)
Auto-ignat10%MFB(5°CA)
Auto-ignat35%MFB
Auto-ignat65%MFB
Auto-ignition
Noauto-ignition
limit
Combustionmodellingsolutionsforalternativefuels
SensitivityonAuto-IgnitionTendency:Tunburned
•Localhotspotsmightbemodeledviatheinfluenceonlocalunburnedtemperature
−Hotspots(e.g.exhaustvalve,sparkplug)arecharacterizedbyanincreasedlocalunburnedmixturetemperature
−Calibrationofmixtureinhomogeneitiesandhotspotsbasedon3DCFDsimulationresults,combiningthehighfidelityof3DCFDsimulationswiththeexcellentbalancebetweeneffortandaccuracytypicalfor0D/1Dapproaches
•Exemplaryvariationoflocaltemperatureatahotspotrepresentingtheauto-
ignitionlocationintheunburntzone
•Hotspotsrepresentedbymarginally
highertemperatures(+2..4%)resultinanincreasedknockpropensity
•Anunburnttemperatureincreaseofjust6%alreadyresultsinamega-knock
(massfractionburnedatauto-ignitionbelow1%)
17IAV04/2024TD-F3mrßStatus:draft,public
•ExemplaryvariationoflocalLambdaattheauto-ignitionlocationintheunburntzone
•Increasedauto-ignitionpropensityatlocalrichzones:
−Richerlambdaresultsinanearlierauto-
ignition;retardingtheignitiontimingrequiredtoreduceknocktendency
Combustionmodellingsolutionsforalternativefuels
SensitivityonAuto-IgnitionTendency:λunburned
•IAV’sauto-ignitionmodeliscapableofconsideringtheeffectsoflocalrichzonesand/orhotspots
−Combustioncalculationbasedonacylinder-averagedin-cylinderLambdavalue,asinhomogeneityeffectonburnratenegligibleinmostcases
−Auto-Ignitionpredictionconsideringlocalrichzonesandgastemperatures(e.g.hotspots)basedon3DCFD
coldflowsimulationresults
Auto-ignat68%MFB(22°CA)
Auto-ignat79%MFB(26°CA)
Auto-ignat96%MFB(34°CA)
NoknockingMFB50=
18.6°CAaFTDC
Knocklimit
18IAV04/2024TD-F3mrßStatus:draft,public
ApplicationExamplesforIAV´shydrogencombustionmodel
(LP-)DIpostinjectionH2
Boosting/Optimization1DsimulationforH2engines
CombustionmodellingsolutionsforalternativefuelsApplicationExample:H2LPDIwithpost-injection
•IncontrasttoPFIhydrogeninjection,a2nd(LP-)directinjectionoffersanadditionalchancetoincreaseboostwhichinturncanbeusedtoimproveeitherpowerperformanceorreduceNOxemissions
•Theeffectofa2ndlateinjectiononexhaustenthalpyhasbeeninvestigatedbyIAVbothexperimentallyandin1Dsimulation
•Duetotheimpactonengineefficiency,this”solution“mightbeappliedspecificallyintransientoperationonly
Stationaryat1200rpm/14barTransientloadresponseat1200rpm
20IAV04/2024TD-F3mrßStatus:draft,public
Combustionmodellingsolutionsforalternativefuels
LPDIwithpost-injection:cylinderpressureanalysis
Stationaryat1200rpm/14bar
w/postINJ(pred.model)w/postINJ(exp.)
•Verygoodagreementbetweenpredictive1DmodelandmeasurementforwardsimulationcapabilityalsoforpostinjectionandimpactonEATsimulation!
21IAV04/2024TD-F3mrßStatus:draft,public
ApplicationExamplesforIAV´shydrogencombustionmodel
(LP-)DIpostinjectionH2
Boosting/Optimization1DsimulationforH2engines
engine
Combustionmodellingsolutionsforalternativefuels
TC-matchingformediumdutyLPDIengine
•(LP-DI)engineshaveaverymuchdifferentdemandontheboostingsystemthanPFIengines
•IAV´spredictiveH21Dcombustionmodelallowsanefficientandaccurateoptimizationoftheboostingsystem
HP-stage
LP-stage
23IAV04/2024TD-F3mrßStatus:draft,public
MassMultiplierLP-stage
engine
1.35
torque[Nm]
1.30
1.25
1.20
HP-stage
1.15
LP-stage
)
2.
(λ
1.10
1.05
1.00
TC)
(D
Bas
0.95
0.90
0.85
Combustionmodellingsolutionsforalternativefuels
TC-matchingformediumdutyLPDIengine
76
5
De
signa
rea
979
1000
=
rpm05
esize
iesel-
0.850.900.951.001.051.101.151.201.251.301.35
MassMultiplierHP-stage
24IAV04/2024TD-F3mrßStatus:draft,public
36.0
MassMultiplierLP-stage
engine
1.35
1.25
765
1.20
HP-stage
0.90
Combustionmodellingsolutionsforalterna
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度技术转让合同标的明细
- 运载工具用平视显示装置市场环境与对策分析
- 拖车车灯市场发展现状调查及供需格局分析预测报告
- 2024年度物业服务合同管理范围
- 2024年度橱柜加工合同技术培训与技术转移条款
- 2024年度汽车制造外包合同
- 2024年度影视制作与代驾服务合同
- 图书架市场发展现状调查及供需格局分析预测报告
- 2024年度演艺经纪合同及演出安排
- 烫发剂市场需求与消费特点分析
- 马克思的资本有机构成理论与当代中国的经济发展
- 《秸秆还田》ppt课件
- 食品加工企业安全设计设施专篇
- 颈动脉斑块科普知识PPT参考幻灯片
- 封头容积、质量、内表面积和总高度计算
- 反射隔热涂料施工方案(完整版)
- 海南省建设工程施工阶段监理服务费计费规则
- [精编]《工伤保险》之铁路企业职工工伤保险试行办法
- 创建五星级班组PPT课件
- TBJWA001-2021健康直饮水水质标准
- 监理日报模板
评论
0/150
提交评论