内燃机-替代燃料燃烧模型解决方案-2024-05-技术资料_第1页
内燃机-替代燃料燃烧模型解决方案-2024-05-技术资料_第2页
内燃机-替代燃料燃烧模型解决方案-2024-05-技术资料_第3页
内燃机-替代燃料燃烧模型解决方案-2024-05-技术资料_第4页
内燃机-替代燃料燃烧模型解决方案-2024-05-技术资料_第5页
已阅读5页,还剩47页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Combustionmodellingsolutionsforalternativefuels

MOBEXWebinar

MichaelRieß,April2024

Content

Introductionandstatuscombustionmodeldevelopmentforalternativefuels

InsightIAV´shydrogencombustionmodel

ApplicationexamplesforIAV´sH2-ICEcombustionmodel

Conclusionandoutlook

Introductionandstatuscombustionmodeldevelopmentfor

alternativefuels

Ventilhub

DetailedConceptDesign

ConceptEvaluation

1654

495

2000

4000

3000

3500

07

4000

4500

4000

3500

3000

2500

2000

1500

4000

3500

3000

2500

2000

1500

1000

0D/1D

3000

3000

2500

2500

2ndVirtualPrototypeLayout

540。KW720

90180270

360450

Col1

3

Combustionmodellingsolutionsforalternativefuels

OverarchingICEdevelopmentprocess

Pre-ConceptLayout

BasedonTargetsand/or

SystemLevel

outputPowertrain

ComponentLevel

Synthesis

CombustionProcess

Injector/Port…

FuelEffects

Knocking&

RawEmissions

4500

4500

4500

Simulation

Submodels

SubsystemLevel

Charging&

In-Cylinder

Flow

EAT

developedbyIAV

CombustionDesignwith

HighFidelity3DCFD

GasExchange

&Valvetrain

1stVirtualPrototypeLayout

4IAV04/2024TD-F3mrßStatus:draft,public

Combustionmodellingsolutionsforalternativefuels

Overview/selectedfuelsforICEapplications

Proprietarymodelsavailable(1D)

Developmentofmodelsongoing

Usingcommercialmodels

5IAV04/2024TD-F3mrßStatus:draft,public

SI

homogeneous

SI

stratified

CI

DFhomogeneous

CI

DFstratified

CI

DFdoublediffusive

Available/validated

Notyet

Available/validated

Notyet

Notyet

Available/validationongoing

Notyet

Workinprogress

Notyet

Notyet

Workinprogress

Notyet

Planned

Notyet

Notyet

CombustionmodellingsolutionsforalternativefuelsStatusandnextsteps

H2

CH3OH

NH3

BasicInjectionSystem

IgnitionSystem

AdvancedInjectionSystem

PilotfuelinjectionSystem

6IAV04/2024TD-F3mrßStatus:draft,public

InsightIAV´shydrogencombustionmodel

Validation/

Calibration

Parametrization

(burnrate,in/expressure)

Inalldevelopmentlevels,IAVaimsatemployingownphenomenologicalmodelsthatenablepredictive

simulationofsystem

behavior,e.g.

−Ignition

−Knock

−Flamespeed/burnrate

−Engine–outemissions

−Tailpipeemissions

Validationofassumptionsandsimulationresultson

alllevels(specific

componenttestingorin-

situexperiments)ispartofIAV´sdevelopmentprocess

SystemLevel

SubsystemLevel

Virtual

Highfidelity3DCFD

Drivingdesigniterationsforcombustionimprovement

1DSimulation

Validation

Validation

SingleCylinderEngine

Experimental

CombustionmodellingsolutionsforalternativefuelsDevelopmentprocessforH2ICE

ComponentLevel

Initial0D/1D/3DCFD

IAVH2KnockPrediction

IAVH2LaminarFlameSpeedModel

EOemissionsmodel

Validation/Calibration

H2EngineDynos

660kW/pH2≤100barpressure

bomb,RCM,vessel

combustion

spray

RapidPrototypingbymeansof3Dprint,e.g.pistonsandcylinderheads

8IAV04/2024TD-F3mrßStatus:draft,public

Combustionmodellingsolutionsforalternativefuels

IAV’sPhenomenologicalHydrogenSICombustionModel

•IAV’sH2combustionmodeldevelopedbasedondetailedchemicalkineticssimulation

•IAV’sphenomenologicalH2combustionmodelincludesdedicatedsubmodelstoconsidermostfuel-specificeffects

1.Laminarflamespeedmodel

Dedicatedapproachforhydrogenlaminarflamespeedsdevelopedbasedondetailedreactionkineticsimulationsandconsideringallrelevantboundaryconditions

(Lambdaupto4,EGRratesofupto50%,pressureofupto250barandentirerelevantunburntgastemperaturerange)

2.Auto-ignitionmodelforthepredictionofknock,capableofconsideringtheeffectofmixtureinhomogeneities

Basedonthewidely-usedLivengood-Wuintegralrepresentingthedegreeofchemicalreactionsintheunburnedmixtureresultinginknock:

C

;A,B,C=f(T,p,λ,EGR)

Parametersfittedbasedonignitiondelaytimesimulationswithdetailedreactionkinetics

Theignitiondelaytimesτarecalculatedwithahydrogen-dedicatedArrhenius-type

equation:

t=te

1=න

t=0

dt

τ=A∙e

1000T

B

IAV’sH2combustionmodeliswidelypublished,e.g.Rezaei,R.,Hayduk,C.,Fandakov,A.,Rieß,M.etal.,“NumericalandExperimentalInvestigationsofHydrogenCombustionforHeavy-DutyApplications,”SAETechnicalPaper2021-01-0522

9IAV04/2024TD-F3mrßStatus:draft,public

CombustionmodellingsolutionsforalternativefuelsValidationresultsofIAV´spremixedH2combustionmodel

FocusofIAV´sproprietaryH2combustionmodel

•H2laminarflamevelocityunderallrelevantboundaryconditions(T,p,lambda,EGR)withpcylupto250bar,lambdaupto4,EGRupto50%

•Asemi-empiricmodeltopredictresidualH2

•Akineticmodeltopredictauto-ignitionandengineknockwithboundariessimilartolaminarflamespeed

ValidationbasisonaperfectlypremixedH2-ICE

•Lambdafrom1.6…3.6,cooledEGRfrom0…30%

•Indicatedmeaneffectivepressurefrom5-22bar

•Enginespeedfrom900-1900rpm

10IAV04/2024TD-F3mrßStatus:draft,public

SimulatedSimulated

SimulatedSimulated

SimulatedSimulated

SimulatedSimulated

Prediction:Auto-IgnitionModel

3

bar

I

EP720

±5%in

bar

M

5%

T

otalEGR

Rate±5

%(relati

ve)in%

MaximumPressure±5%inbar

16

14

12

10

8

4。CA

MF

10-MFB7

BurnDu5±3。CA

rationin。CA

PredictionofAuto-Ignition

5。CA

SparkTiming±3。CAin。CAaFTDC

CombustionmodellingsolutionsforalternativefuelsValidationresultsofIAV´spremixedH2combustionmodel

PredictionofCombustionCharacteristics

Measured

Measured

0

.3

λ±5%

in-

Measured

5

g/kWh

BSF

C±5

%in

g/kW

h

Measured

a

20br

Measured

Measured

3

。CA

M

FB50

±3。

CAin

。CA

aFTD

C

Measured

6

4

2

0

B

Measured

Crank

Anglea

tAuto-I

gnition

±1。CAi

n。CA

0246810121416

Simulation:ReactionKineticMechanism

IAV’scustomcombustionmodelcanaccuratelypredictallrelevanthydrogencombustioncharacteristicsaswellasauto-ignitionintheunburntmass

11IAV04/2024TD-F3mrßStatus:draft,public

Combustionmodellingsolutionsforalternativefuels

λ:2.0

ValidationresultsofIAV´spremixedH2combustionmodel

1316rpm/20barIMEP

Ext.EGR:0%

PFI-perfectlyhomogeneousmixture

RobustH2combustionwithgoodrunningstabilityachievedatlambda2.0;knocklimitfoundat3。CA

12IAV04/2024TD-F3mrßStatus:draft,public

KnockPropensityIntegral/1=te

•Validationofpredictedcombustionphasing(MFB50)attheknocklimitwithaconstantcalibrationparameter

value

•Asatisfactoryresultisachievedwithamax.MFB50-deviationof2°CA(OP6)

CombustionmodellingsolutionsforalternativefuelsValidationresultsofIAV´spremixedH2combustionmodel-autoignition

MFB50SensitivityAnalysisonKnockPropensity@1316rpm/20barIMEP

MFB50~2°CA

ValidationofpredictedMFB50-points

•Generaleffectofcombustionphasingonknockpropensityisaccuratelyrepresentedbythephenomenologicalmodel

•Theknocksimulationmodelreliesonthecombustion

characteristicspredictedbyIAV’shydrogencombustionmodel

13IAV04/2024TD-F3mrßStatus:draft,public

CombustionmodellingsolutionsforalternativefuelsChallengeswithH2duetoinhomogeneities

•SufficientmixturepreparationisthemostcrucialissuewithH2-ICE

•BeneficialdiffusionbehaviourofH2comparedtootherfuelsplayaratherminorroleduetotherelevanttimescales.

•Insufficienthomogeneitydeliverspoorcombustion-andemissionsperformance.

•H2featuresfastcombustionevenindiluted/leanconditions

•Whilethisfastcombustionisbeneficialforefficiencyandcombustionstability,itcreateshightemperature

•Minimumgloballambdainthemapshallbearound~2withonlysmalllocaldeviations(s(λ)<0.1)inordertoavoidNOxcreation

•FasterH2combustionleadstoincreasedpcylandTcylcomparedtogasoline

•Ultimately,highpandTleadtodrasticallyreducedignitiondelayauto-ignition

•Dilution(air/EGR)mitigatesthisissueandenableoperationathigherspecpower

•Poorhomogeneityandrichspotsneedtobeavoided(PI,Knock,Backfire)

14IAV04/2024TD-F3mrßStatus:draft,public

CFDResultLambda

•Injection

•Flow

•Geometry

•Timing

•IAVphenomenologicalcombustionmodel:

•Gasexchange,charging

•Strategy/optimization

lean

rich

-3D

IAV1DLink

Input:CFDresultor“worst

case”assumption

CombustionmodellingsolutionsforalternativefuelsConsiderationofinhomogeneitiesforauto-ignitionprediction

Maindriverforknockandpre-ignitionphenomenaarelocalinhomogeneitiesconcerningtemperatureandlambdadistribution

1DSimulation

hot

likerichzonesandinfluenceof

IAV1Dauto-ignitionmodeliscapabletotakelocalinhomogeneities

plug,

spots(spark

exhaustvalve)intoaccount:

Combustioncalculationwitha“global”enginelambda(two-zonecalculationwiththeentrainmentmodel)

Auto-ignitioncalculationwithLivengood-Wuintegralrepresentingthedegreeofchemicalreactions(pre-

reactions)intheunburnedzone:

Auto-Ignitionpredictionbasedonalocalrichlambdazone

Auto-Ignitionpredictionconsideringalocaltemperatureofahotspot

IAVphenomenological1Dcombustionmodeliscapabletoconsidertolocalinhomogeneitiesoflambdaand

temperatureforauto-ignitionandknockprediction

15IAV04/2024TD-F3mrßStatus:draft,public

CombustionmodellingsolutionsforalternativefuelsConsiderationofinhomogeneitiesforauto-ignition

•IAV’sproprietaryhydrogencombustionmodel

packageenablesthepredictive0D/1Dsimulationofhydrogencombustion,knockpropensityand

NOxemissions

•H2-modelscanbeusedforbothsteady-stateandtransientsimulations

•DedicatedGUIformodelparametrizationthatcanbeembeddedintoanyenginemodel

•FullyintegratedresultoutputinGT-POST

•H2-modelscompatiblewithallGT-POWER

versionsafterV2016andavailablefordifferentoperatingsystems

16IAV04/2024TD-F3mrßStatus:draft,public

Auto-ignat0%MFB(-3°CA)

Pre-ignition

Auto-ignat0%MFB(0°CA)

Auto-ignat10%MFB(5°CA)

Auto-ignat35%MFB

Auto-ignat65%MFB

Auto-ignition

Noauto-ignition

limit

Combustionmodellingsolutionsforalternativefuels

SensitivityonAuto-IgnitionTendency:Tunburned

•Localhotspotsmightbemodeledviatheinfluenceonlocalunburnedtemperature

−Hotspots(e.g.exhaustvalve,sparkplug)arecharacterizedbyanincreasedlocalunburnedmixturetemperature

−Calibrationofmixtureinhomogeneitiesandhotspotsbasedon3DCFDsimulationresults,combiningthehighfidelityof3DCFDsimulationswiththeexcellentbalancebetweeneffortandaccuracytypicalfor0D/1Dapproaches

•Exemplaryvariationoflocaltemperatureatahotspotrepresentingtheauto-

ignitionlocationintheunburntzone

•Hotspotsrepresentedbymarginally

highertemperatures(+2..4%)resultinanincreasedknockpropensity

•Anunburnttemperatureincreaseofjust6%alreadyresultsinamega-knock

(massfractionburnedatauto-ignitionbelow1%)

17IAV04/2024TD-F3mrßStatus:draft,public

•ExemplaryvariationoflocalLambdaattheauto-ignitionlocationintheunburntzone

•Increasedauto-ignitionpropensityatlocalrichzones:

−Richerlambdaresultsinanearlierauto-

ignition;retardingtheignitiontimingrequiredtoreduceknocktendency

Combustionmodellingsolutionsforalternativefuels

SensitivityonAuto-IgnitionTendency:λunburned

•IAV’sauto-ignitionmodeliscapableofconsideringtheeffectsoflocalrichzonesand/orhotspots

−Combustioncalculationbasedonacylinder-averagedin-cylinderLambdavalue,asinhomogeneityeffectonburnratenegligibleinmostcases

−Auto-Ignitionpredictionconsideringlocalrichzonesandgastemperatures(e.g.hotspots)basedon3DCFD

coldflowsimulationresults

Auto-ignat68%MFB(22°CA)

Auto-ignat79%MFB(26°CA)

Auto-ignat96%MFB(34°CA)

NoknockingMFB50=

18.6°CAaFTDC

Knocklimit

18IAV04/2024TD-F3mrßStatus:draft,public

ApplicationExamplesforIAV´shydrogencombustionmodel

(LP-)DIpostinjectionH2

Boosting/Optimization1DsimulationforH2engines

CombustionmodellingsolutionsforalternativefuelsApplicationExample:H2LPDIwithpost-injection

•IncontrasttoPFIhydrogeninjection,a2nd(LP-)directinjectionoffersanadditionalchancetoincreaseboostwhichinturncanbeusedtoimproveeitherpowerperformanceorreduceNOxemissions

•Theeffectofa2ndlateinjectiononexhaustenthalpyhasbeeninvestigatedbyIAVbothexperimentallyandin1Dsimulation

•Duetotheimpactonengineefficiency,this”solution“mightbeappliedspecificallyintransientoperationonly

Stationaryat1200rpm/14barTransientloadresponseat1200rpm

20IAV04/2024TD-F3mrßStatus:draft,public

Combustionmodellingsolutionsforalternativefuels

LPDIwithpost-injection:cylinderpressureanalysis

Stationaryat1200rpm/14bar

w/postINJ(pred.model)w/postINJ(exp.)

•Verygoodagreementbetweenpredictive1DmodelandmeasurementforwardsimulationcapabilityalsoforpostinjectionandimpactonEATsimulation!

21IAV04/2024TD-F3mrßStatus:draft,public

ApplicationExamplesforIAV´shydrogencombustionmodel

(LP-)DIpostinjectionH2

Boosting/Optimization1DsimulationforH2engines

engine

Combustionmodellingsolutionsforalternativefuels

TC-matchingformediumdutyLPDIengine

•(LP-DI)engineshaveaverymuchdifferentdemandontheboostingsystemthanPFIengines

•IAV´spredictiveH21Dcombustionmodelallowsanefficientandaccurateoptimizationoftheboostingsystem

HP-stage

LP-stage

23IAV04/2024TD-F3mrßStatus:draft,public

MassMultiplierLP-stage

engine

1.35

torque[Nm]

1.30

1.25

1.20

HP-stage

1.15

LP-stage

)

2.

1.10

1.05

1.00

TC)

(D

Bas

0.95

0.90

0.85

Combustionmodellingsolutionsforalternativefuels

TC-matchingformediumdutyLPDIengine

76

5

De

signa

rea

979

1000

=

rpm05

esize

iesel-

0.850.900.951.001.051.101.151.201.251.301.35

MassMultiplierHP-stage

24IAV04/2024TD-F3mrßStatus:draft,public

36.0

MassMultiplierLP-stage

engine

1.35

1.25

765

1.20

HP-stage

0.90

Combustionmodellingsolutionsforalterna

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论