版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题13相交线与平行线中的动点问题训练(时间:60分钟总分:120)班级姓名得分解答题解题策略:(1)常见失分因素:①对题意缺乏正确的理解,应做到慢审题快做题;②公式记忆不牢,考前一定要熟悉公式、定理、性质等;③思维不严谨,不要忽视易错点;④解题步骤不规范,一定要按课本要求,否则会因不规范答题而失分,避免“对而不全”,如解概率题时,要给出适当的文字说明,不能只列几个式子或单纯的结论,表达不规范、字迹不工整等非智力因素会影响阅卷老师的“感情分”;⑤计算能力差导致失分多,会做的试题一定不能放过,不能一味求快,⑥轻易放弃试题,难题不会做时,可分解成小问题,分步解决,如最起码能将文字语言翻译成符号语言、设应用题未知数、设轨迹的动点坐标等,都能拿分。也许随着这些小步骤的罗列,还能悟出解题的灵感。(2)何为“分段得分”:对于同一道题目,有的人理解的深,有的人理解的浅;有的人解决的多,有的人解决的少。为了区分这种情况,中考的阅卷评分办法是懂多少知识就给多少分。这种方法我们叫它“分段评分”,或者“踩点给分”——踩上知识点就得分,踩得多就多得分。与之对应的“分段得分”的基本精神是,会做的题目力求不失分,部分理解的题目力争多得分。对于会做的题目,要解决“会而不对,对而不全”这个老大难问题。有的考生拿到题目,明明会做,但最终答案却是错的——会而不对。有的考生答案虽然对,但中间有逻辑缺陷或概念错误,或缺少关键步骤——对而不全。因此,会做的题目要特别注意表达的准确、考虑的周密、书写的规范、语言的科学,防止被“分段扣分”。经验表明,对于考生会做的题目,阅卷老师则更注意找其中的合理成分,分段给点分,所以“做不出来的题目得一二分易,做得出来的题目得满分难”。对绝大多数考生来说,更为重要的是如何从拿不下来的题目中分段得点分。我们说,有什么样的解题策略,就有什么样的得分策略。把你解题的真实过程原原本本写出来,就是“分段得分”的全部秘密。①缺步解答:如果遇到一个很困难的问题,确实啃不动,一个聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步,尚未成功不等于失败。特别是那些解题层次明显的题目,或者是已经程序化了的方法,每一步得分点的演算都可以得分,最后结论虽然未得出,但分数却已过半,这叫“大题拿小分”。②跳步答题:解题过程卡在某一过渡环节上是常见的。这时,我们可以先承认中间结论,往后推,看能否得到结论。如果不能,说明这个途径不对,立即改变方向;如果能得出预期结论,就回过头来,集中力量攻克这一“卡壳处”。由于考试时间的限制,“卡壳处”的攻克如果来不及了,就可以把前面的写下来,再写出“证实某步之后,继续有……”一直做到底。也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面。若题目有两问,第一问想不出来,可把第一问作为“已知”,先做第二问,这也是跳步解答。③退步解答:“以退求进”是一个重要的解题策略。如果你不能解决所提出的问题,那么,你可以从一般退到特殊,从抽象退到具体,从复杂退到简单,从整体退到部分,从较强的结论退到较弱的结论。总之,退到一个你能够解决的问题。为了不产生“以偏概全”的误解,应开门见山写上“本题分几种情况”。这样,还会为寻找正确的、一般性的解法提供有意义的启发。④辅助解答:一道题目的完整解答,既有主要的实质性的步骤,也有次要的辅助性的步骤。实质性的步骤未找到之前,找辅助性的步骤是明智之举。如:准确作图,把题目中的条件翻译成数学表达式,设应用题的未知数等。答卷中要做到稳扎稳打,字字有据,步步准确,尽量一次成功,提高成功率。试题做完后要认真做好解后检查,看是否有空题,答卷是否准确,所写字母与题中图形上的是否一致,格式是否规范,尤其是要审查字母、符号是否抄错,在确信万无一失后方可交卷。一、解答题综合与探究:
将三角形纸板如图放置,点P是边AB边上一点,DF//CE,∠PCE=∠α,∠PDF=∠β,
探究:
(1)如果α=30°,β=40°,则∠DPC=______.
猜想:
(2)当点P在E、F两点之间运动时,∠DPC与α、β之间有何数量关系?并说明理由;
拓展:
(3)如果点P在E、F两点外侧运动时(点P与点A、B、E、F四点不重合),上述(2)中的结论是否还成立?并说明理由.如图1,AB//CD,G为AB、CD之间一点.
(1)若GE平分∠AEF,GF平分∠EFC.求证:EG⊥FG;
(2)如图2,若∠AEP=25AEF,∠CFP=25∠EFC,且FP的延长线交∠AEP的角平分线于点M,EP的延长线交∠CFP的角平分线于点N,猜想∠M+∠N的结果并且证明你的结论;
(3)如图3,若点H是射线EB之间一动点,FG平分∠EFH,MF平分∠EFC,过点G作GQ⊥FM于点Q,请猜想直线AB与的两边相交于A,B两点,点C是OA边上另一点,过点C作,交OB边于点D,点P是OA边一动点与O,A,C三点不重合,连接PB,,,.
若点P在线段AC上运动,如图,
依题意补全图;
判断,,的数量关系并加以证明;
若点P在线段AC外运动时,直接写出,,的数量关系.如图,已知AM//BN,∠A=60°.点P是射线AM上一动点(与点A不重合),BC、BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.
(1)求∠CBD的度数;
(2)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.
(3)当点P运动到使∠ACB=∠ABD时,∠ABC的度数是______.已知:直线EF分别与直线AB,CD相交于点G,H,并且∠AGE+∠DHE=180°.
(1)如图1,求证:AB//CD;
(2)如图2,点M在直线AB,CD之间,连接GM,HM,求证:∠M=∠AGM+∠CHM;
(3)如图3,在(2)的条件下,射线GH是∠BGM的平分线,在MH的延长线上取点N,连接GN,若∠N=∠AGM,∠M=∠N+12∠FGN,求∠MHG的度数.已知直线l1//l2,且l3与l1,l2分别交于A,B两点,l4与l1,l2相交于C,D两点,点P在直线AB上运动.
(1)如图1,当点P在A,B两点间运动时,试探究∠1,∠2,∠3之间的关系,并说明理由;
(2)如图2,A点在B处北偏东32°方向,A点在C处的北偏西56°方向,应用探究(1)的结论求出∠BAC的度数;
(3)如果点P在A,B如图,MN//OP,点A为直线MN上一定点,B为直线OP上的动点,在直线MN与OP之间且在线段AB的右方作点D,使得AD⊥BD.设∠DAB=α(α为锐角).
(1)求∠NAD与∠PBD的和;(提示过点D作EF//MN)
(2)当点B在直线OP上运动时,试说明∠OBD−∠NAD=90°;
(3)当点B在直线OP上运动的过程中,若AD平分∠NAB,AB也恰好平分∠OBD,请求出此时α的值已知:▵ABC和同一平面内的点P.
(1)如图1,若点P在BC边上,过点P作PE//AB交AC于点E,作PF//AC交AB于点F.根据题意,请在图1中补全图形,并直接写出∠A与∠EPF的数量关系;
(2)如图2,若点P在CB的延长线上,且PF//AC,∠A=∠EPF.请判断AB与PE的位置关系,并说明理由;
(3)如图3,点P是▵ABC外部的一点,过点P作PE//AB交直线AC于点E,作PF//AC交直线AB于点F,请直接写出∠A与∠EPF的数量关系,并在图3中补全图形.
图1
图2
图3如图①,已知直线l1、l2,直线l3和直线l1、l2交于点C和D,在直线l3上有动点P(点P与点C、D不重合),点A在直线l1上,点B在直线l2上.
(1)问题发现:如果点P在C、D之间运动时,且满足∠1+∠3=∠2,请写出l1与l2之间的位置关系______;
(2)拓展探究:如图②如果l1//l2,点P在直线l1的上方运动时,试猜想∠1+∠2与∠3之间关系并给予证明;
(3)已知:如图1,AB//CD,C在D的右侧,BE平分∠ABC,DE平分∠ADC,BE,DE所在直线交于点E,
图1
图2(1)若∠ABC=40°,∠ADC=70°,则∠BED=____(度);(2)若∠ABC=m°,∠ADC=n°,求∠BED的度数(用含m,n的式子表示).(3)将图1中的线段BC沿DC所在的直线平移,使得点B在点A的右侧,若∠ABC=m°,∠ADC=n°,其他条件不变,得到图2,请你求出∠BED的度数(用含m,n的式子表示).直线AB//CD,点P为平面内一点,连接AP,CP.
(1)如图①,点P在直线AB,CD之间,当∠BAP=60°,∠DCP=20°时,求∠APC的度数;
(2)如图②,点P在直线AB,CD之间,∠BAP与∠DCP的角平分线相交于K,写出∠AKC与∠APC之间的数量关系,并说明理由;
(3)如图③,点P在直线CD下方,当∠BAK=23∠BAP,∠DCK=23∠DCP时,写出已知直线l1// l2,直线l3与l1,l2分别交于C(1)如图①,若动点P在线段CD之间运动(不与C,D两点重合),问在点P的运动过程中是否始终具有∠3+∠1=∠2这一相等关系?试说明理由;(2)如图②,当动点P在线段CD之外且在直线l1的上方运动(不与C,D两点重合)(3)请画出动点P在线段CD之外且在直线l2的下方运动(不与C,D两点重合)时的图形,并仿照图①、图②标出∠1,∠2,∠3,此时∠1,∠2,∠3如图,在平面直角坐标系中,点A在X轴正半轴上,B在Y轴的负半轴,过点B画MN//x轴;C是Y轴上一点,连接AC,作CD⊥CA.
(1)如图(1),请直接写出∠CAO与∠CDB的数量关系.
(2)如图(2),在题(1)的条件下,∠CAO的角平分线与∠CDB的角平分线相交于点P,求∠APD的度数.
(3)如图(2),在题(1)、(2)的条件下,∠CAx的角平分线与∠CDN的角平分线相交于点Q,请直接写出∠APD与∠AQD数量关系.
(4)如图(3),点C在Y轴的正半轴上运动时,∠CAO的角平分线所在的直线与∠CDB的角平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 六年级语文下册教学计划苏教版
- 妇科病普查计划
- 2025年上学期幼儿园园务工作计划范例
- 幼儿园12月份计划
- 2025年口腔科工作计划模板
- 五年级上册语文复习计划怎么写
- 《计算机文件基础 Windows 7+Office +Internet项目式教程》课件-第2章
- 2020版 沪教版 高中音乐 必修5音乐与舞蹈 上篇《第二单元 天下歌舞》大单元整体教学设计2020课标
- 合同案诉讼费收费标准
- 体检费用合同模板
- 最优化计算智慧树知到答案2024年华南理工大学
- 力的合成与分解 说课课件-2024-2025学年高一上学期物理人教版(2019)必修第一册
- 建筑施工安全生产治本攻坚三年行动方案(2024-2026年)
- 沥青路面养护铣刨施工技术规范.文档
- 油浸式电力变压器(电抗器)现场低频加热试验导则
- 桥式、门式起重机安装竣工试验报告书
- 大学生助农直播创业计划书
- DL-T 1476-2023 电力安全工器具预防性试验规程
- 植物景观规划与设计智慧树知到期末考试答案章节答案2024年青岛理工大学
- 中国戏曲剧种鉴赏智慧树知到期末考试答案章节答案2024年上海戏剧学院等跨校共建
- 三年级上册数学教案-4.2 三位数减两位数、三位数的笔算减法 ︳人教新课标
评论
0/150
提交评论