版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
5.3.1单调性情境问题怎样利用函数单调性的定义来讨论其在定义域的单调性?学生活动1.探究1:由定义证明函数的单调性的一般步骤是什么?
2.探究2:导数与函数的单调性有什么联系?3.探究3:如果在某区间上是增函数,那么在该区间上必有
吗?数学建构1.函数的导数与函数的单调性的关系.我们已经知道,曲线
的切线的斜率就是函数
的导数.从函数的图象可以看到:切线的斜率(2,+∞)增函数正>0(-∞,2)减函数负<0数学建构在区间(2,+∞)内,切线的斜率为正,函数
的值随着
x
的增大而增大,即
>0时,函数
在区间(2,+∞)内为增函数.在区间(-∞,2)内,切线的斜率为负,函数
的值随着
x
的增大而减小,即
<0时,函数
在区间(-∞,2)内为增函数.数学建构一般地,我们有下面的结论:对于函数
,如果在某区间上
,那么
为该区间上的增函数;如果在某区间上
,那么
为该区间上的减函数.上述结论可以用图(1)和图(2)来直观理解.数学建构2.利用导数求函数单调区间的步骤:(1)求函数
的导数
;(2)令
解不等式,得x的范围,就是递增区间;(3)令
解不等式,得x的范围,就是递减区间.数学应用例1确定函数
在哪个区间上是增函数,在哪个区间上是减函数.解
,令
,解得
.因此,在区间(2,+∞)上,
,
是增函数;在区间(-∞,2)上,
,
是减函数.数学应用例2
确定函数
在哪些区间上是增函数.解
,令
,解得
或
.因此,在区间(-∞,0)上,
,
是增函数;在区间(2,+∞)上,
,
也是增函数(如下图).数学应用例3确定函数
(x∈(0,2π))的减区间.解
.令
,即
.又
x∈(0,2π),所以x∈(,)
.故所求的减区间是(,).小结1.
在某区间上可导,可以根据
或
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安全驾驶人人有责承诺书3篇
- 方管购销风险转移条款3篇
- 工人与包工头劳务合同3篇
- 推拿店加盟协议3篇
- 旅游场地租赁管理协议3篇
- 安徽设计行业设计师劳动合同范本3篇
- 搅拌车买卖协议3篇
- 古典风格大学建设协议
- 长沙市二手房交易全程陪同合同
- 城市安防监控系统安装合同
- 消除艾梅乙工作专班制度汇编手册修订版艾滋病梅毒乙肝
- 小学五年级植树问题练习及答案
- 仿真花卉安装施工合同
- 乙炔氧气安全供货协议
- 科学精神与科学研究方法智慧树知到期末考试答案章节答案2024年中国石油大学(华东)
- 美容仪器应用智慧树知到期末考试答案章节答案2024年西安海棠职业学院
- 新生儿呼吸窘迫综合征抢救流程图
- 中国历史文化知识竞赛100题带答案(完整版)
- (正式版)JTT 1499-2024 公路水运工程临时用电技术规程
- 环境有害物质培训考核试题+答案
- 北师大版八年级数学(上册)完全复习知识点+典型例题
评论
0/150
提交评论