




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
5.3.1单调性情境问题怎样利用函数单调性的定义来讨论其在定义域的单调性?学生活动1.探究1:由定义证明函数的单调性的一般步骤是什么?
2.探究2:导数与函数的单调性有什么联系?3.探究3:如果在某区间上是增函数,那么在该区间上必有
吗?数学建构1.函数的导数与函数的单调性的关系.我们已经知道,曲线
的切线的斜率就是函数
的导数.从函数的图象可以看到:切线的斜率(2,+∞)增函数正>0(-∞,2)减函数负<0数学建构在区间(2,+∞)内,切线的斜率为正,函数
的值随着
x
的增大而增大,即
>0时,函数
在区间(2,+∞)内为增函数.在区间(-∞,2)内,切线的斜率为负,函数
的值随着
x
的增大而减小,即
<0时,函数
在区间(-∞,2)内为增函数.数学建构一般地,我们有下面的结论:对于函数
,如果在某区间上
,那么
为该区间上的增函数;如果在某区间上
,那么
为该区间上的减函数.上述结论可以用图(1)和图(2)来直观理解.数学建构2.利用导数求函数单调区间的步骤:(1)求函数
的导数
;(2)令
解不等式,得x的范围,就是递增区间;(3)令
解不等式,得x的范围,就是递减区间.数学应用例1确定函数
在哪个区间上是增函数,在哪个区间上是减函数.解
,令
,解得
.因此,在区间(2,+∞)上,
,
是增函数;在区间(-∞,2)上,
,
是减函数.数学应用例2
确定函数
在哪些区间上是增函数.解
,令
,解得
或
.因此,在区间(-∞,0)上,
,
是增函数;在区间(2,+∞)上,
,
也是增函数(如下图).数学应用例3确定函数
(x∈(0,2π))的减区间.解
.令
,即
.又
x∈(0,2π),所以x∈(,)
.故所求的减区间是(,).小结1.
在某区间上可导,可以根据
或
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- Cefadroxil-13C6-BL-S-578-sup-13-sup-C-sub-6-sub-生命科学试剂-MCE
- 江门职业技术学院《数字合成基础(AE)》2023-2024学年第一学期期末试卷
- 武汉晴川学院《理论与实践(二)》2023-2024学年第一学期期末试卷
- 浙江长征职业技术学院《案例与论文写作》2023-2024学年第一学期期末试卷
- 2024-2025学年宿州市重点中学数学七年级第一学期期末学业水平测试模拟试题含解析
- 江苏省南通港闸区五校联考2024-2025学年化学九年级第一学期期末监测试题含解析
- 大连海洋大学《全科医学》2023-2024学年第一学期期末试卷
- 企业资金流动的审计策略分析
- 辽宁特殊教育师范高等专科学校《现代食品营养与安全自科类》2023-2024学年第一学期期末试卷
- 2025届北京理工大附中分校七年级数学第一学期期末教学质量检测试题含解析
- 【中考真题】2025年北京市中考数学真题(含解析)
- 浙江省台州市2024-2025学年高一下学期6月期末英语试题
- 光伏发电项目施工方案(安装)光伏施工方案
- 行为安全观察与沟通
- 疲劳风险培训课件
- GB/T 45707-2025皮革铬鞣鞋面用坯革规范
- 2025年中小学教师职称评审考试试卷及答案
- 中职学校教材管理制度
- 海绵城市建设中的BIM技术应用实例
- 高校教师资格证考试《高等教育心理学》真题及解析(2025年)
- (王瑞元版本)运动生理学-课件-3-第三章-血液
评论
0/150
提交评论