版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2020-2021学年陕西省宝鸡市渭滨区高二(下)期末数学试卷(理科)一、选择题(共12小题,每小题5分,共60分).1.已知复数z=,则在复平面内z对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.下列求导数运算错误的是()A.(x2021+e)'=2021x2020 B.(3x)'=3xln3 C.(sinx)'=cosx D.3.曲线f(x)=ex+x在(0,f(0))处的切线方程为()A.y=x+1 B.y=x﹣1 C.y=2x+1 D.y=2x﹣14.物体运动的位移方程是S=10t﹣t2(S的单位为m;t的单位为s),则物体在t=3s的瞬时速度是()A.2m/s B.4m/s C.6m/s D.8m/s5.用反证法证明“已知直线a,b,c,若a∥c,b∥c,则a∥b”时应假设()A.a与b相交 B.a与b异面 C.a与b相交或异面 D.a与b垂直6.若随机变量X~B(6,p),DX=,则EX=()A.1 B.2 C.3 D.47.的展开式中常数项为()A.160 B.184 C.192 D.1868.由曲线,x=1,x=3,x轴围成的图形绕x轴旋转一周所得旋转体的体积是()A.2π B.3π C.4π D.9π9.在平面直角坐标系中,点(x0,y0)到直线Ax+By+C=0的距离,类比可得在空间直角坐标系中,点(1,2,3)到平面x+2y+2z﹣4=0的距离为()A. B. C.4 D.510.下列说法中错误的是()A.对于两个事件A,B,如果P(AB)=P(A)P(B),则称事件A,B相互独立 B.线性回归直线=b+a一定过样本中心点(,) C.空间正多面体只有正四面体、正六面体、正八面体、正十二面体和正二十面体五个多面体 D.利用合情推理得出的结论一定是正确的11.(1+x)4+(2+x)3+(1+2x)2=a0+a1x+a2x2+a3x3+a4x4,则a0+a1+a2+a3+a4=()A.49 B.52 C.56 D.5912.若函数f(x)在R上可导,且满足f(x)>xf'(x),则()A.2f(1)<f(2) B.2f(1)>f(2) C.2f(1)=f(2) D.2f(1)≤f(2)二、填空题(共4个小题,每小题5分,共20分)13.函数的单调减区间是.14.已知某一随机变量X的概率分布列如表所示,且EX=3,则DX=.Xa34P0.10.7b15.若函数在x=0和x=1时取极小值,则实数m的取值范围是.16.若把一句话“我爱大中华”的汉字顺序写错了,则可能出现错误的情况共有种.三、解答题(共5小题,满分70分)17.用数学归纳法证明:对任意正整数n,4n+15n﹣1能被9整除.18.已知函数f(x)为一次函数,若函数f(x)的图象过点(1,3),且.(1)求函数f(x)的表达式;(2)若函数g(x)=x2,求函数f(x)与g(x)的图象围成图形的面积.19.已知函数有三个极值点.(1)求c的取值范围;(2)若存在c=27,使函数f(x)在区间[a,a+2]上单调递减,求a的取值范围.20.某企业在产品出厂前必须进行两轮检测,只有两轮都合格才能进行销售,否则不能销售,已知该产品第一轮检测不合格的概率为,第二轮检测不合格的概率为,两轮检测是否合格相互没有影响.(1)求该产品不能销售的概率;(2)如果该产品可以销售,则每件产品可获利40元;如果该产品不能销售,则每件产品亏损20元,已知一箱中有该产品4件,记一箱该产品获利η元,求η的分布列.21.为了迎接期末考试,学生甲参加考前的5次模拟考试,下面是学生甲参加5次模拟考试的数学成绩表:x12345y90100105105100(1)已知该考生的模拟考试成绩y与模拟考试的次数x满足回归直线方程=x+,若把本次期末考试看作第6次模拟考试,试估计该考生的期末数学成绩;(2)把这5次模拟考试的数学成绩单放在5个相同的信封中,从中随机抽取3份试卷的成绩单进行研究,设抽取考试成绩不等于平均值的个数为η,求出η的分布列与数学期望.参考公式:==,=x+.
参考答案一、选择题(共12小题,每小题5分,共60分).1.已知复数z=,则在复平面内z对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限解:∵,∴z在复平面内z对应的点为(3,1),在第一象限.故选:A.2.下列求导数运算错误的是()A.(x2021+e)'=2021x2020 B.(3x)'=3xln3 C.(sinx)'=cosx D.解:(x2021+e)′=2021x2020,(3x)′=3xln3,(sinx)′=cosx,.故选:D.3.曲线f(x)=ex+x在(0,f(0))处的切线方程为()A.y=x+1 B.y=x﹣1 C.y=2x+1 D.y=2x﹣1解:由f(x)=ex+x,得f′(x)=ex+x=ex+1,∴f′(0)=e0+1=2,又f(0)=e0=1,∴曲线f(x)=ex+x在(0,f(0))处的切线方程为y﹣1=2(x﹣0),即y=2x+1.故选:C.4.物体运动的位移方程是S=10t﹣t2(S的单位为m;t的单位为s),则物体在t=3s的瞬时速度是()A.2m/s B.4m/s C.6m/s D.8m/s解:∵S′=10﹣2t,S′|t=3=10﹣6=4,∴物体在t=3s的瞬时速度是4m/s.故选:B.5.用反证法证明“已知直线a,b,c,若a∥c,b∥c,则a∥b”时应假设()A.a与b相交 B.a与b异面 C.a与b相交或异面 D.a与b垂直解:a与b的位置关系有a∥b和a与b不平行两种,因此用反证法证明“a∥b”时,应先假设a与b不平行,即a与b相交或异面.故选:C.6.若随机变量X~B(6,p),DX=,则EX=()A.1 B.2 C.3 D.4解:由于随机变量X~B(6,p),DX=,则6p(1﹣p)=,得p=,E(X)=6p=6×=3,故选:C.7.的展开式中常数项为()A.160 B.184 C.192 D.186解:∵的展开式的通项公式为Tr+1=•26﹣r•x6﹣2r,令6﹣2r=0,求得r=3,可得展开式中常数项为•23=160,故选:A.8.由曲线,x=1,x=3,x轴围成的图形绕x轴旋转一周所得旋转体的体积是()A.2π B.3π C.4π D.9π解:曲线,x=1,x=3,x轴围成的图形绕x轴旋转一周所得旋转体的体积是V=πxdx=π×x2=×(23﹣12)=4π.故选:C.9.在平面直角坐标系中,点(x0,y0)到直线Ax+By+C=0的距离,类比可得在空间直角坐标系中,点(1,2,3)到平面x+2y+2z﹣4=0的距离为()A. B. C.4 D.5解:根据题意,类比可得在空间直角坐标系中,点(1,2,3)到平面x+2y+2z﹣4=0的距离为=.故选:A.10.下列说法中错误的是()A.对于两个事件A,B,如果P(AB)=P(A)P(B),则称事件A,B相互独立 B.线性回归直线=b+a一定过样本中心点(,) C.空间正多面体只有正四面体、正六面体、正八面体、正十二面体和正二十面体五个多面体 D.利用合情推理得出的结论一定是正确的解:对于A:对于两个事件A,B,如果P(AB)=P(A)P(B),则称事件A,B相互独立,故A正确;对于B:线性回归直线=b+a一定过样本中心点(,),故B正确;对于C:设正多面体的顶点数为V,棱数为E,面数F,每个面是正m变形(其中整数m≥3),每个顶点有n条边与之交汇(其中整数n≥3),则mF=2E,nV=2E,与欧拉公式V﹣E+F=2联立,消去F,V得﹣E+=2,即﹣1+=,则=>0,则mn﹣2m﹣2n<0,即(m﹣2)(n﹣2)<4(其中整数m≥3,n≥2),则或或或或,则F=•E=•==4或8或6或20或12,所以正多面体只有正四面体,正六面体,正八面体,正十二面体,正二十面体,这五种,故C正确;对于D:合情推理得到的结论不一定正确,它是由特殊到一般,其本质就是由特殊猜想一般性结论,结论是否正确可判断,一般前提为真,结论可能为真,故D错误;故选:D.11.(1+x)4+(2+x)3+(1+2x)2=a0+a1x+a2x2+a3x3+a4x4,则a0+a1+a2+a3+a4=()A.49 B.52 C.56 D.59解:∵(1+x)4+(2+x)3+(1+2x)2=a0+a1x+a2x2+a3x3+a4x4,则令x=1,可得a0+a1+a2+a3+a4=24+33+32=52,故选:B.12.若函数f(x)在R上可导,且满足f(x)>xf'(x),则()A.2f(1)<f(2) B.2f(1)>f(2) C.2f(1)=f(2) D.2f(1)≤f(2)解:因为f(x)>xf′(x),所以f(x)﹣xf′(x)>0,设F(x)=,F′(x)=<0,所以F(x)在R上单调递减,所以F(2)<F(1),所以<,即f(2)<2f(1),故选:B.二、填空题(共4个小题,每小题5分,共20分)13.函数的单调减区间是(﹣2,4).解:f′(x)=x2﹣2x﹣8=(x﹣4)(x+2),令f′(x)<0,得﹣2<x<4,所以f(x)的单调递减区间为(﹣2,4).故答案为:(﹣2,4).14.已知某一随机变量X的概率分布列如表所示,且EX=3,则DX=0.6.Xa34P0.10.7b解:由题意可得:0.1+0.7+b=1,解得b=0.8,EX=3,可得3=0.1a+3×0.7+4×0.2,解得a=1,DX=0.1×(1﹣3)2+07×(3﹣3)2+0.2×(4﹣3)2=0.6,故答案为:0.6.15.若函数在x=0和x=1时取极小值,则实数m的取值范围是(0,1).解:f′(x)=x3﹣(m+1)x2+mx=x(x﹣m)(x﹣1),当m<0时,在(﹣∞,0)上f′(x)<0,f(x)单调递减,在(m,0)上f′(x)>0,f(x)单调递增,在(0,1)上f′(x)<0,f(x)单调递减,在(1,+∞)上f′(x)>0,f(x)单调递增,所以f(x)在x=0处取得极大值,在x=1处取得极小值,不合题意,当m=0时,f′(x)=x3﹣x2,f″(x)=3x2﹣2x,所以在(﹣∞,0)上,f″(x)>0,f′(x)单调递增,在(0,)上,f″(x)<0,f′(x)单调递减,在(,+∞)上,f″(x)>0,f′(x)单调递增,又因为f′(0)=0,f′()=()3﹣()2=﹣,f′(1)=0,所以在(﹣∞,0),(0,1)上,f′(x)<0,f(x)单调递减,在(1,+∞)上,f′(x)>0,f(x)单调递增,所以在x=1处取得极小值,x=0处没有取得极值点,不合题意,当0<m<1时,在(﹣∞,0)上f′(x)<0,f(x)单调递减,在(0,m)上f′(x)>0,f(x)单调递增,在(m,1)上f′(x)<0,f(x)单调递减,在(1,+∞)上f′(x)>0,f(x)单调递增,所以f(x)在x=0,x=1处取得极小值,合题意,当m=1时,f′(x)=x3﹣2x2+x,f″(x)=3x2﹣4x+1=(3x﹣1)(x﹣1),在(﹣∞,)上,f″(x)>0,f′(x)单调递增,在(,1)上,f″(x)<0,f′(x)单调递减,在(1,+∞)上,f″(x)>0,f′(x)单调递增,又f′()=()3﹣2()2+=,f′(1)=0,f′(0)=0,所以在(﹣∞,0)上,f′(x)<0,f(x)单调递减,在(0,1)上,f′(x)>0,f(x)单调递增,在(1,+∞)上,f′(x)>0,f(x)单调递增,所以在x=0处取得极小值,x=1处不是极值点,当m>1时,在(﹣∞,0)上f′(x)<0,f(x)单调递减,在(0,1)上f′(x)>0,f(x)单调递增,在(1,m)上f′(x)<0,f(x)单调递减,在(m,+∞)上f′(x)>0,f(x)单调递增,所以f(x)在x=0处取得极小值,x=1处取得极大值,不合题意,故答案为:(0,1).16.若把一句话“我爱大中华”的汉字顺序写错了,则可能出现错误的情况共有119种.解:根据题意,“我爱大中华”五个字排成一排,有=120种不同的顺序,其中正确的只有1种,则可能出现错误的情况有120﹣1=119种;故答案为:119.三、解答题(共5小题,满分70分)17.用数学归纳法证明:对任意正整数n,4n+15n﹣1能被9整除.【解答】证明:(1)当n=1时,4n+15n﹣1=18,能被9整除,故当n=1时,4n+15n﹣1能被9整除.(2)假设当n=k时,命题成立,即4k+15k﹣1能被9整除,则当n=k+1时,4k+1+15(k+1)﹣1=4(4k+15k﹣1)﹣9(5k﹣2)也能被9整除.综合(1)(2)可得,对任意正整数n,4n+15n﹣1能被9整除.18.已知函数f(x)为一次函数,若函数f(x)的图象过点(1,3),且.(1)求函数f(x)的表达式;(2)若函数g(x)=x2,求函数f(x)与g(x)的图象围成图形的面积.解:(1)根据题意,f(x)为一次函数,设f(x)=kx+b(k≠0),又因为函数f(x)的图象过点(1,3),则有3=k+b,①又由,即f(x)dx=(kx+b)dx=(kx2+bx)=+3b=,②由①②得:k=1,b=2,故f(x)=x+2;(2)由,解可得x1=﹣1,x2=2,所以f(x)与g(x)围成的图形面积为,即S=(x+2﹣x2)dx=(x2+2x﹣)=;故函数f(x)与g(x)的图象围成图形的面积为.19.已知函数有三个极值点.(1)求c的取值范围;(2)若存在c=27,使函数f(x)在区间[a,a+2]上单调递减,求a的取值范围.解:(1)因为函数有三个极值点,则f'(x)=x3﹣3x2﹣9x+c=0有三个不等的实根,设g(x)=x3﹣3x2﹣9x+c,则g'(x)=3x2﹣6x﹣9=3(x﹣3)(x+1),当x∈(﹣∞,﹣1)或(3,+∞)时,g'(x)>0,g(x)单调递增,当x∈(﹣1,3)时,g'(x)<0,g(x)单调递减,故,即,解得﹣5<c<27,所以c的取值范围为(﹣5,27);(2)当c=27时,f'(x)=x3﹣3x2﹣9x+27=(x﹣3)2(x+3),由f'(x)<0,可得x<﹣3,所以f(x)在(﹣∞,﹣3)上单调递减,又函数f(x)在区间[a,a+2]上单调递减,所以a+2≤﹣3,故a的取值范
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年金融服务采购合同创新金融产品合作协议2篇
- 导演与发行方2025年度合同3篇
- 二零二五年度餐饮泔水处理与环保设施运营管理合同6篇
- 二零二五年度高校毕业生就业见习实践基地建设合作合同3篇
- 二零二五年度航空航天设备维修承包合同样本3篇
- 二零二五年高性能混凝土委托加工合同范本3篇
- 碎石买卖合同(二零二五年度)2篇
- 二零二五年度药品质量第三方检测合同范本6篇
- 二零二五版国际贸易中货物所有权转移与国际贸易政策研究合同3篇
- 2025年度电力设施租赁合同标的转让协议3篇
- 课题申报书:大中小学铸牢中华民族共同体意识教育一体化研究
- 岩土工程勘察课件0岩土工程勘察
- 《肾上腺肿瘤》课件
- 2024-2030年中国典当行业发展前景预测及融资策略分析报告
- 《乘用车越野性能主观评价方法》
- 幼师个人成长发展规划
- 2024-2025学年北师大版高二上学期期末英语试题及解答参考
- 批发面包采购合同范本
- 乘风化麟 蛇我其谁 2025XX集团年终总结暨颁奖盛典
- 2024年大数据分析公司与中国政府合作协议
- 一年级数学(上)计算题专项练习汇编
评论
0/150
提交评论