苏州市张家港市苏科版数学八级下学期期中试卷含答案解析_第1页
苏州市张家港市苏科版数学八级下学期期中试卷含答案解析_第2页
苏州市张家港市苏科版数学八级下学期期中试卷含答案解析_第3页
苏州市张家港市苏科版数学八级下学期期中试卷含答案解析_第4页
苏州市张家港市苏科版数学八级下学期期中试卷含答案解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2015-2016学年江苏省苏州市张家港市八年级(下)期中数学试卷一、选择题:(本题共10小题,每小题3分,共30分)1.函数y=的自变量x的取值范围是()A.x≠0 B.x≠1 C.x≥1 D.x≤12.已知点A(1,2)在反比例函数y=的图象上,则该反比例函数的解析式是()A.y= B.y= C.y= D.y=2x3.下列命题中,真命题是()A.四边相等的四边形是正方形B.对角线相等的菱形是正方形C.正方形的两条对角线相等,但不互相垂直平分D.矩形、菱形、正方形都具有“对角线相等”的性质4.下列运算正确的是()A.﹣= B.=2 C.×= D.5.如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD的面积为()A.6 B.12 C.20 D.246.若点(x1,y1),(x2,y2),(x3,y3)都是反比例函数y=﹣图象上的点,并且y1<0<y2<y3,则下列各式中正确的是()A.x1<x2<x3 B.x1<x3<x2 C.x2<x1<x3 D.x2<x3<x17.下列事件中,是必然事件的为()A.3天内会下雨B.打开电视机,正在播放广告C.367人中至少有2人公历生日相同D.某妇产医院里,下一个出生的婴儿是女孩8.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形CODE的周长()A.4 B.6 C.8 D.109.下列分式是最简分式的()A. B.C. D.10.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是()A.1 B.2 C.3 D.4二、填空题:(本题共8小题,每小题3分,共24分)11.当m=时,分式的值为零.12.如果最简二次根式与最简二次根式是同类二次根式,则x=.13.如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=.14.如图,四边形ABCD是平行四边形,AC与BD相交于点O,添加一个条件:,可使它成为菱形.15.如图,在四边形ABCD中,E、F分别是AD、BC的中点,G、H分别是BD、AC的中点,当AB、CD满足条件时,有EF⊥GH.16.已知关于x的分式方程﹣=1的解为负数,则k的取值范围是.17.如图,点A在直线y=x上,AB⊥x轴于点B,点C在线段AB上,以AC为边作正方形ACDE,点D恰好在反比例函数y=(k为常数,k≠0)第一象限的图象上,连接AD.若OA2﹣AD2=20,则k的值为.18.如图,正方形ABCD的边长为4,E为BC上一点,BE=1,F为AB上一点,AF=2,P为AC上一点,则PF+PE的最小值为.三、解答题:(本题共10题,满分76分)19.计算与化简:(1)﹣+(2)÷3×(3)÷﹣×+(4)÷(x+2)•.20.①化简:﹣x﹣2;②化简分式(﹣)÷,并从﹣1≤x≤2中选一个你认为合适的整数x代入求值.21.解分式方程:.22.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣5,1),B(﹣2,2),C(﹣1,4),请按下列要求画图:(1)将△ABC先向右平移4个单位长度、再向下平移1个单位长度,得到△A1B1C1,画出△A1B1C1;(2)△A2B2C2与△ABC关于原点O成中心对称,画出△A2B2C2.23.某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分布直方图和扇形统计图.根据图中提供的信息,解答下列问题:(1)补全频数分布直方图;(2)求扇形统计图中m的值和“E”组对应的圆心角度数;(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数.24.某服装店购进一批甲、乙两种款型时尚T恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T恤衫各购进多少件?(2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T恤衫商店共获利多少元?25.如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC.(1)求证:四边形BFCE是平行四边形;(2)若AD=10,DC=3,∠EBD=60°,则BE=时,四边形BFCE是菱形.26.如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象与反比例函数y=的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及△AOB的面积;(3)求方程kx+b﹣<0的解集(请直接写出答案).27.如图,反比例函数(k>0)与长方形OABC在第一象限相交于D、E两点,OA=2,OC=4,连接OD、OE、DE.记△OAD、△OCE的面积分别为S1、S2.(1)①点B坐标为;②S1S2(填“>”、“<”、“=”);(2)当点D为线段AB的中点时,求k的值及点E坐标;(3)当S1+S2=2时,试判断△ODE的形状,并求△ODE的面积.28.已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图1,连接AF、CE.求证四边形AFCE为菱形,并求AF的长;(2)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,①已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.②若点P、Q的运动路程分别为a、b(单位:cm,ab≠0),已知A、C、P、Q四点为顶点的四边形是平行四边形,求a与b满足的数量关系式.2015-2016学年江苏省苏州市张家港市八年级(下)期中数学试卷参考答案与试题解析一、选择题:(本题共10小题,每小题3分,共30分)1.函数y=的自变量x的取值范围是()A.x≠0 B.x≠1 C.x≥1 D.x≤1【考点】函数自变量的取值范围.【分析】根据分式有意义的条件是分母不为0,可得x﹣1≠0,解不等式即可.【解答】解:根据题意,有x﹣1≠0,解得x≠1.故选B.2.已知点A(1,2)在反比例函数y=的图象上,则该反比例函数的解析式是()A.y= B.y= C.y= D.y=2x【考点】待定系数法求反比例函数解析式.【分析】把A(1,2)代入解析式就得到k的值,从而求出解析式.【解答】解:∵点A(1,2)在反比例函数y=的图象上,∴2=,∴k=2,则这个反比例函数的解析式是y=.故选C.3.下列命题中,真命题是()A.四边相等的四边形是正方形B.对角线相等的菱形是正方形C.正方形的两条对角线相等,但不互相垂直平分D.矩形、菱形、正方形都具有“对角线相等”的性质【考点】命题与定理;菱形的性质;正方形的性质;正方形的判定.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、可判断为菱形,故本选项错误,B、对角线相等的菱形是正方形,故本选项正确,C、正方形的两条对角线相等,且互相垂直平分,故本选项错误,D、菱形的对角线不一定相等,故本选项错误,故选B.4.下列运算正确的是()A.﹣= B.=2 C.×= D.【考点】二次根式的混合运算.【分析】根据二次根式的运算规则进行计算即可.【解答】解:A、﹣≠,故本选项错误;B、=,故本选项错误;C、×=,故本选项错误;D、=﹣2,故本选项正确.故选D.5.如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD的面积为()A.6 B.12 C.20 D.24【考点】平行四边形的判定与性质;全等三角形的判定与性质;勾股定理.【分析】根据勾股定理,可得EC的长,根据平行四边形的判定,可得四边形ABCD的形状,根据平行四边形的面积公式,可得答案.【解答】解:在Rt△BCE中,由勾股定理,得CE===5.∵BE=DE=3,AE=CE=5,∴四边形ABCD是平行四边形.四边形ABCD的面积为BC•BD=4×(3+3)=24,故选:D.6.若点(x1,y1),(x2,y2),(x3,y3)都是反比例函数y=﹣图象上的点,并且y1<0<y2<y3,则下列各式中正确的是()A.x1<x2<x3 B.x1<x3<x2 C.x2<x1<x3 D.x2<x3<x1【考点】反比例函数图象上点的坐标特征.【分析】先根据反比例函数的解析式判断出函数图象所在的象限及在每一象限内函数的增减性,再根据y1<0<y2<y3判断出三点所在的象限,故可得出结论.【解答】解:∵反比例函数y=﹣中k=﹣1<0,∴此函数的图象在二、四象限,且在每一象限内y随x的增大而增大,∵y1<0<y2<y3,∴点(x1,y1)在第四象限,(x2,y2)、(x2,y2)两点均在第二象限,∴x2<x3<x1.故选D.7.下列事件中,是必然事件的为()A.3天内会下雨B.打开电视机,正在播放广告C.367人中至少有2人公历生日相同D.某妇产医院里,下一个出生的婴儿是女孩【考点】随机事件.【分析】根据随机事件和必然事件的定义分别进行判断.【解答】解:A、3天内会下雨为随机事件,所以A选项错误;B、打开电视机,正在播放广告,所以B选项错误;C、367人中至少有2人公历生日相同是必然事件,所以C选项正确;D、某妇产医院里,下一个出生的婴儿是女孩是随机事件,所以D选项错误.故选C.8.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形CODE的周长()A.4 B.6 C.8 D.10【考点】菱形的判定与性质;矩形的性质.【分析】首先由CE∥BD,DE∥AC,可证得四边形CODE是平行四边形,又由四边形ABCD是矩形,根据矩形的性质,易得OC=OD=2,即可判定四边形CODE是菱形,继而求得答案.【解答】解:∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形,∵四边形ABCD是矩形,∴AC=BD=4,OA=OC,OB=OD,∴OD=OC=AC=2,∴四边形CODE是菱形,∴四边形CODE的周长为:4OC=4×2=8.故选C.9.下列分式是最简分式的()A. B.C. D.【考点】最简分式;分式的基本性质;约分.【分析】根据分式的基本性质进行约分,画出最简分式即可进行判断.【解答】解:A、=,故本选项错误;B、=,故本选项错误;C、,不能约分,故本选项正确;D、==,故本选项错误;故选C.10.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是()A.1 B.2 C.3 D.4【考点】反比例函数综合题.【分析】作CE⊥y轴于点E,交双曲线于点G.作DF⊥x轴于点F,易证△OAB≌△FDA≌△BEC,求得A、B的坐标,根据全等三角形的性质可以求得C、D的坐标,从而利用待定系数法求得反比例函数的解析式,进而求得G的坐标,则a的值即可求解.【解答】解:作CE⊥y轴于点E,交双曲线于点G.作DF⊥x轴于点F.在y=﹣3x+3中,令x=0,解得:y=3,即B的坐标是(0,3).令y=0,解得:x=1,即A的坐标是(1,0).则OB=3,OA=1.∵∠BAD=90°,∴∠BAO+∠DAF=90°,又∵直角△ABO中,∠BAO+∠OBA=90°,∴∠DAF=∠OBA,∵在△OAB和△FDA中,,∴△OAB≌△FDA(AAS),同理,△OAB≌△FDA≌△BEC,∴AF=OB=EC=3,DF=OA=BE=1,故D的坐标是(4,1),C的坐标是(3,4).代入y=得:k=4,则函数的解析式是:y=.∴OE=4,则C的纵坐标是4,把y=4代入y=得:x=1.即G的坐标是(1,4),∴CG=2.故选:B.二、填空题:(本题共8小题,每小题3分,共24分)11.当m=﹣2时,分式的值为零.【考点】分式的值为零的条件.【分析】分式的值为零时,分子等于零,且分母不等于零.【解答】解:依题意,得|m|﹣2=0,且m﹣2≠0,解得,m=﹣2.故答案是:﹣2.12.如果最简二次根式与最简二次根式是同类二次根式,则x=2.【考点】同类二次根式.【分析】根据题意,它们的被开方数相同,列出方程求解.【解答】解:∵最简二次根式与最简二次根式是同类二次根式,∴x+3=1+2x,解得:x=2.当x=2时,6和是最简二次根式且是同类二次根式.故答案为:2.13.如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=6.【考点】反比例函数系数k的几何意义.【分析】欲求S1+S2,只要求出过A、B两点向x轴、y轴作垂线段求出与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=的系数k,由此即可求出S1+S2.【解答】解:∵点A、B是双曲线y=上的点,分别经过A、B两点向x轴、y轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∴S1+S2=4+4﹣1×2=6.故答案为6.14.如图,四边形ABCD是平行四边形,AC与BD相交于点O,添加一个条件:AB=BC或AC⊥BD等,可使它成为菱形.【考点】菱形的判定.【分析】菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形,进而得出答案.【解答】解:∵四边形ABCD是平行四边形,∴当AB=BC时,平行四边形ABCD是菱形,当AC⊥BD时,平行四边形ABCD是菱形.故答案为:AB=BC或AC⊥BD等.15.如图,在四边形ABCD中,E、F分别是AD、BC的中点,G、H分别是BD、AC的中点,当AB、CD满足条件AB=CD时,有EF⊥GH.【考点】中点四边形.【分析】连接EG、GF、FH、HE,根据三角形中位线定理得到EG∥AB,EG=AB,GF∥CD,GF=CD,FH∥AB,FH=AB,EH∥CD,EH=CD,得到平行四边形EGFH,根据菱形的判定和性质证明结论.【解答】解:当AB=CD时,EF⊥GH.利用:连接EG、GF、FH、HE,∵E、G分别是AD、BD的中点,∴EG∥AB,EG=AB,同理GF∥CD,GF=CD,FH∥AB,FH=AB,EH∥CD,EH=CD,∴EG∥FH,EG=FH,∴四边形EGFH是平行四边形,当AB=CD时,EG=EH,∴四边形EGFH是菱形,∴EF⊥GH.故答案为:AB=CD.16.已知关于x的分式方程﹣=1的解为负数,则k的取值范围是k>且k≠1.【考点】分式方程的解.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,根据解为负数确定出k的范围即可.【解答】解:去分母得:(x+k)(x﹣1)﹣k(x+1)=x2﹣1,去括号得:x2﹣x+kx﹣k﹣kx﹣k=x2﹣1,移项合并得:x=1﹣2k,根据题意得:1﹣2k<0,且1﹣2k≠±1解得:k>且k≠1故答案为:k>且k≠1.17.如图,点A在直线y=x上,AB⊥x轴于点B,点C在线段AB上,以AC为边作正方形ACDE,点D恰好在反比例函数y=(k为常数,k≠0)第一象限的图象上,连接AD.若OA2﹣AD2=20,则k的值为10.【考点】反比例函数与一次函数的交点问题.【分析】设正方形的边长为a,A(t,t),则OB=AB=t,AC=CD=a,于是可表示出C(t,t﹣a),D(t+a,t﹣a),利用等腰直角三角形的性质得OA=t,AD=a,则由OA2﹣AD2=20可得t2﹣a2=10,然后根据反比例函数图象上点的坐标特征得k=(t+a)(t﹣a)=t2﹣a2=10.【解答】解:设正方形的边长为a,A(t,t),则OB=AB=t,AC=CD=a,∴C(t,t﹣a),D(t+a,t﹣a),∴OA=t,AD=a,∵OA2﹣AD2=20,∴(t)2﹣(a)2=20,∴t2﹣a2=10,∵点D在反比例函数y=的图象上,∴k=(t+a)(t﹣a)=t2﹣a2=10.故答案为10.18.如图,正方形ABCD的边长为4,E为BC上一点,BE=1,F为AB上一点,AF=2,P为AC上一点,则PF+PE的最小值为.【考点】轴对称-最短路线问题;正方形的性质.【分析】作E关于直线AC的对称点E′,连接E′F,则E′F即为所求,过F作FG⊥CD于G,在Rt△E′FG中,利用勾股定理即可求出E′F的长.【解答】解:作E关于直线AC的对称点E′,连接E′F,则E′F即为所求,过F作FG⊥CD于G,在Rt△E′FG中,GE′=CD﹣BE﹣BF=4﹣1﹣2=1,GF=4,所以E′F=.故答案为:.三、解答题:(本题共10题,满分76分)19.计算与化简:(1)﹣+(2)÷3×(3)÷﹣×+(4)÷(x+2)•.【考点】二次根式的混合运算;分式的混合运算.【分析】(1)先对原式化简,再合并同类项即可解答本题;(2)根据二次根式乘除法的计算方法进行计算即可;(3)先对原式化简,再合并同类项即可解答本题;(4)根据分式的乘除法的计算方法进行计算即可解答本题.【解答】解:(1)﹣+==;(2)÷3×==;(3)÷﹣×+===;(4)÷(x+2)•==.20.①化简:﹣x﹣2;②化简分式(﹣)÷,并从﹣1≤x≤2中选一个你认为合适的整数x代入求值.【考点】分式的化简求值.【分析】①根据分式的减法法则进行计算即可;②先根据分式混合运算的法则把原式进行化简,再选取合适的x的值代入进行计算即可.【解答】解:①原式=﹣==;②原式=÷=•=,当x=2时,原式==.21.解分式方程:.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x(x+1)﹣x2+1=2,去括号得:x2+x﹣x2+1=2,解得:x=1,经检验x=1是增根,分式方程无解.22.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣5,1),B(﹣2,2),C(﹣1,4),请按下列要求画图:(1)将△ABC先向右平移4个单位长度、再向下平移1个单位长度,得到△A1B1C1,画出△A1B1C1;(2)△A2B2C2与△ABC关于原点O成中心对称,画出△A2B2C2.【考点】作图-旋转变换;作图-平移变换.【分析】(1)根据点平移的规律得到A1(﹣1,0),B1(2,1),C1(3,3),然后描点即可;(2)根据关于原点对称的点的坐标特征得到A2(5,﹣1),B2(2,﹣2),C2(1,﹣4),然后描点即可.【解答】解:(1)如图:(2)如图:23.某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分布直方图和扇形统计图.根据图中提供的信息,解答下列问题:(1)补全频数分布直方图;(2)求扇形统计图中m的值和“E”组对应的圆心角度数;(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数.【考点】频数(率)分布直方图;用样本估计总体;扇形统计图.【分析】(1)根据第二组频数为21,所占百分比为21%,求出数据总数,再用数据总数减去其余各组频数得到第四组频数,进而补全频数分布直方图;(2)用第三组频数除以数据总数,再乘以100,得到m的值;先求出“E”组所占百分比,再乘以360°即可求出对应的圆心角度数;(3)用3000乘以每周课外阅读时间不小于6小时的学生所占百分比即可.【解答】解:(1)数据总数为:21÷21%=100,第四组频数为:100﹣10﹣21﹣40﹣4=25,频数分布直方图补充如下:(2)m=40÷100×100=40;“E”组对应的圆心角度数为:360°×=14.4°;(3)3000×(25%+)=870(人).即估计该校3000名学生中每周的课外阅读时间不小于6小时的人数是870人.24.某服装店购进一批甲、乙两种款型时尚T恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T恤衫各购进多少件?(2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T恤衫商店共获利多少元?【考点】分式方程的应用.【分析】(1)可设乙种款型的T恤衫购进x件,则甲种款型的T恤衫购进1.5x件,根据甲种款型每件的进价比乙种款型每件的进价少30元,列出方程即可求解;(2)先求出甲款型的利润,乙款型前面销售一半的利润,后面销售一半的亏损,再相加即可求解.【解答】解:(1)设乙种款型的T恤衫购进x件,则甲种款型的T恤衫购进1.5x件,依题意有+30=,解得x=40,经检验,x=40是原方程组的解,且符合题意,1.5x=60.答:甲种款型的T恤衫购进60件,乙种款型的T恤衫购进40件;(2)=160,160﹣30=130(元),]×(40÷2)=4680+1920﹣640=5960(元)答:售完这批T恤衫商店共获利5960元.25.如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC.(1)求证:四边形BFCE是平行四边形;(2)若AD=10,DC=3,∠EBD=60°,则BE=4时,四边形BFCE是菱形.【考点】平行四边形的判定;菱形的判定.【分析】(1)由AE=DF,∠A=∠D,AB=DC,易证得△AEC≌△DFB,即可得BF=EC,∠ACE=∠DBF,且EC∥BF,即可判定四边形BFCE是平行四边形;(2)当四边形BFCE是菱形时,BE=CE,根据菱形的性质即可得到结果.【解答】(1)证明:∵AB=DC,∴AC=DB,在△AEC和△DFB中,∴△AEC≌△DFB(SAS),∴BF=EC,∠ACE=∠DBF∴EC∥BF,∴四边形BFCE是平行四边形;(2)当四边形BFCE是菱形时,BE=CE,∵AD=10,DC=3,AB=CD=3,∴BC=10﹣3﹣3=4,∵∠EBD=60°,∴BE=BC=4,∴当BE=4时,四边形BFCE是菱形,故答案为:4.26.如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象与反比例函数y=的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及△AOB的面积;(3)求方程kx+b﹣<0的解集(请直接写出答案).【考点】反比例函数与一次函数的交点问题.【分析】(1)根据B(2,﹣4)在反比例函数y=的图象上求出m的值,根据题意求出n的值,再运用待定系数法求出一次函数的解析式;(2)求出y=﹣x﹣2与x轴的交点C的坐标,根据△AOB的面积=△AOC的面积+△COB的面积求出△AOB的面积;(3)观察图象得到答案.【解答】解:∵B(2,﹣4)在反比例函数y=的图象上,∴m=﹣8,∴反比例函数解析式为:y=﹣,则n=2,由题意得,,解得,,∴一次函数的解析式为y=﹣x﹣2;(2)当﹣x﹣2=0时,x=﹣2,∴点C的坐标为:(﹣2,0),△AOB的面积=△AOC的面积+△COB的面积=×2×2+×2×4=6;(3)由图象可知,当﹣4<x<0或x>2时,kx+b<,∴kx+b﹣<0的解集为:﹣4<x<0或x>2.27.如图,反比例函数(k>0)与长方形OABC在第一象限相交于D、E两点,OA=2,OC=4,连接OD、OE、DE.记△OAD、△OCE的面积分别为S1、S2.(1)①点B坐标为(4,2);②S1=S2(填“>”、“<”、“=”);(2)当点D为线段AB的中点时,求k的值及点E坐标;(3)当S1+S2=2时,试判断△ODE的形状,并求△ODE的面积.【考点】反比例函数综合题.【分析】(1)根据OA=2,OC=4可直接得到点B坐标;②根据反比例函k的意义可知S1、S2都等于|k|,即可得到答案;(2)当点D为AB中点时,AD=2,得出D的坐标是(2,2),求出解析式即可;(3)根据当S1+S2=2时,由(1)得出S1=S2=1,进而得出BD,BE的长,进而得出DO2+DE2=OE2,△ODE是直角三角形,进而得出三角形面积.【解答】解:(1)①根据长方形OABC中,OA=2,OC=4,则点B坐标为(4,2),②∵反比例函数(k>0)与长方形OABC在第一象限相交于D、E两点,利用△OAD、△OCE的面积分别为S1=AD•AO,S2=•CO•EC,xy=k,得出,S1=AD•AO=k,S2=•CO•EC=k,∴S1=S2;(2)当点D为AB中点时,AD=2,∴D的坐标是(2,2),把D(2,2)代入y=得:k=2×2=4,∴y=.∵点B坐标为(4,2),∴E点横坐标为:4,∴4×y=4,∴y=1,∴E点坐标为:(4,1);(3)当S1+S2=2时,∵S1=S2,∴S1=S2=1,∵S1=AD•AO=AD×2=1,∴AD=1,∵S2=•CO•EC=×4×EC=1,∴EC=,∵OA=2,OC=4,∴BD=4﹣1=3,BE=2﹣=,∴DO2=AO2+AD2=4+1=5,DE2=DB2+BE2=9+=,OE2=CO2+CE2=16+=,∴DO2+DE2=OE2,∴△ODE是直角三角形,∵DO2=5,∴DO=,∵DE2=,∴DE=,∴△ODE的面积为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论