版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省临汾市宏昌国际学校高三数学理下学期摸底试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.如图,正方形的顶点,,顶点位于第一象限,直线将正方形分成两部分,记位于直线左侧阴影部分的面积为,则函数的图象大致是(
)A
B
C
D参考答案:C2.给出下列三个命题:①函数与是同一函数;②若函数与的图像关于直线对称,则函数与的图像也关于直线对称;③如图,在中,,是上的一点,若,则实数的值为.其中真命题是A.①② B.①③ C.②③ D.②参考答案:C3.“|x|<2”是“x2-x-6<0”的 (
)A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件参考答案:A略4.已知函数,若,f(x)的图象恒在直线y=3的上方,则的取值范围是(
)A. B. C. D.参考答案:C的图象恒在直线的上方,即恒成立,当k=0时,的取值范围是.故答案为:C.
5.若函数f(x)=x2+ax+b在区间[0,1]上的最大值是M,最小值是m,则M–mA.与a有关,且与b有关 B.与a有关,但与b无关C.与a无关,且与b无关 D.与a无关,但与b有关参考答案:B试题分析:因为最值在f(0)=b,f(1)=1+a+b,中取,所以最值之差一定与b无关,选B.【名师点睛】对于二次函数的最值或值域问题,通常先判断函数图象对称轴与所给自变量闭区间的关系,结合图象,当函数图象开口向上时,若对称轴在区间的左边,则函数在所给区间内单调递增;若对称轴在区间的右边,则函数在所给区间内单调递减;若对称轴在区间内,则函数图象顶点的纵坐标为最小值,区间端点距离对称轴较远的一端取得函数的最大值.6.已知各项为正的等比数列满足·=,=1,则=(
)A.
B.2
C.
D.参考答案:A略7.已知全集,集合,,则等于
(A).
(B).
(C).
(D).参考答案:C8.已知函数f(x)是R上的单调增函数且为奇函数,数列{an}是等差数列,a3>0,则f(a1)+f(a3)+f(a5)的值(
)A.恒为正数 B.恒为负数 C.恒为0 D.可正可负参考答案:A【考点】等差数列的性质;函数单调性的性质;函数奇偶性的性质.【专题】计算题.【分析】由函数f(x)是R上的奇函数且是增函数数列,知取任何x2>x1,总有f(x2)>f(x1),由函数f(x)是R上的奇函数,知f(0)=0,所以当x>0,f(0)>0,当x<0,f(0)<0.由数列{an}是等差数列,a1+a5=2a3,a3>0,知a1+a5>0,所以f(a1)+f(a5)>0,f(a3)>0,由此知f(a1)+f(a3)+f(a5)恒为正数.【解答】解:∵函数f(x)是R上的奇函数且是增函数数列,∴取任何x2>x1,总有f(x2)>f(x1),∵函数f(x)是R上的奇函数,∴f(0)=0,∵函数f(x)是R上的奇函数且是增函数,∴当x>0,f(0)>0,当x<0,f(0)<0.∵数列{an}是等差数列,a1+a5=2a3,a3>0,∴a1+a5>0,则f(a1)+f(a5)>0,∵f(a3)>0,∴f(a1)+f(a3)+f(a5)恒为正数.【点评】本题考查等差数列的性质和应用,是中档题.解题时要认真审题,仔细解答,注意合理地运用函数的性质进行解题.9.已知点P(x,y)满足,则点Q(x+y,y)构成的图形的面积为() A.1 B. 2 C. 3 D. 4参考答案:B略10.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的最小正周期是π,若其图象向右平移个单位后得到的函数为奇函数,则函数y=f(x)的图象()A.关于点(,0)对称 B.关于直线x=对称C.关于点(,0)对称 D.关于直线x=对称参考答案:D【考点】正弦函数的图象.【分析】由周期求出ω=2,故函数f(x)=sin(2x+φ),再根据图象向右平移个单位后得到的函数y=sin(2x﹣+φ]是奇函数,可得φ=﹣,从而得到函数的解析式,从而求得它的对称性.【解答】解:由题意可得=π,解得ω=2,故函数f(x)=sin(2x+φ),其图象向右平移个单位后得到的图象对应的函数为y=sin[2(x﹣)+φ]=sin(2x﹣+φ]是奇函数,又|φ|<,故φ=﹣,故函数f(x)=sin(2x﹣),故当x=时,函数f(x)=sin=1,故函数f(x)=sin(2x﹣)关于直线x=对称,故选:D.【点评】本题主要考查诱导公式的应用,利用了y=Asin(ωx+φ)的图象变换规律,正弦函数的对称性,属于中档题.二、填空题:本大题共7小题,每小题4分,共28分11.如图,已知球O是棱长为1的正方体ABCD﹣A1B1C1D1的内切球,则以球心O为顶点,以球O被平面ACD1所截得的圆为底面的圆锥的体积为.参考答案:π
12.设函数f(x)的定义域为D,若存在非零实数T使得对任意的,有x+TD,且f(x+T)≥f(x),则称函数f(x)为M上的T高调函数.
(1)现给出下列命题:①函数f(x)=为(0,+)上的T高调函数;②函数f(x)=sinx为R上的2高调函数;③如果定义域为[-l,)的函数f(x)=x2为[-1,)上的m高调函数,那么实数m的取值范围是[2,+∞).其中正确命题的序号是
;
(2)如果定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=,且f(x)为R上的4高调函数,那么实数a的取值范围是
。参考答案:略13.已知数列的前项和为,且对任意,有,则
;
.参考答案:,.14.如果随机变量,且,则=
.参考答案:0.115.实数满足,则的最大值为
.参考答案:略16.函数在区间上是减函数,则的最大值为
.参考答案:17._____________.参考答案:.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知直线过椭圆的右焦点,且交椭圆于A,B两点,线段AB的中点是,(1)求椭圆的方程;(2)过原点的直线l与线段AB相交(不含端点)且交椭圆于C,D两点,求四边形ACBD面积的最大值.参考答案:(1)(2)【分析】(1)由直线可得椭圆右焦点的坐标为,由中点可得,且由斜率公式可得,由点在椭圆上,则,二者作差,进而代入整理可得,即可求解;(2)设直线,点到直线的距离为,则四边形的面积为,将代入椭圆方程,再利用弦长公式求得,利用点到直线距离求得,根据直线l与线段AB(不含端点)相交,可得,即,进而整理换元,由二次函数性质求解最值即可.【详解】(1)直线与x轴交于点,所以椭圆右焦点的坐标为,故,因为线段AB的中点是,设,则,且,又,作差可得,则,得又,所以,因此椭圆的方程为.(2)由(1)联立,解得或,不妨令,易知直线l的斜率存在,设直线,代入,得,解得或,设,则,则,因为到直线的距离分别是,由于直线l与线段AB(不含端点)相交,所以,即,所以,四边形的面积,令,,则,所以,当,即时,,因此四边形面积的最大值为.【点睛】本题考查求椭圆的标准方程,考查椭圆中的四边形面积问题,考查直线与椭圆的位置关系的应用,考查运算能力.19.(本小题满分12分)将函数f(x)=sinx·sin(x+2π)·sin(x+3π)在区间(0,+∞)内的全部极值点按从小到大的顺序排成数列{an}(n∈N*).(1)求数列{an}的通项公式;(2)设bn=2nan,数列{bn}的前n项和为Tn,求Tn的表达式.参考答案:[解析](1)化简f(x)=sinx·sin(x+2π)·sin(x+3π)=sincos·=-sinx其极值点为x=kπ+(k∈Z),它在(0,+∞)内的全部极值点构成以为首项,π为公差的等差数列,an=+(n-1)·π=π(n∈N*).(2)bn=2nan=(2n-1)·2n∴Tn=[1·2+3·22+…+(2n-3)·2n-1+(2n-1)·2n]2Tn=[1·22+3·23+…+(2n-3)·2n+(2n-1)·2n+1]相减得,-Tn=[1·2+2·22+2·23+…+2·2n-(2n-1)·2n+1]∴Tn=π[(2n-3)·2n+3].20.已知函数.(1)求f(x)单调递增区间;(2)△ABC中,角A,B,C的对边a,b,c满足,求f(A)的取值范围.参考答案:【考点】余弦定理;两角和与差的正弦函数;正弦函数的单调性.【分析】(1)f(x)解析式利用二倍角的正弦、余弦函数公式化简,再利用两角和与差的正弦函数公式化简为一个角的正弦函数,利用正弦函数的增减性确定出f(x)的单调增区间即可;(2)利用余弦定理表示cosA,整理后代入已知不等式求出cosA的范围,进而求出A的范围,即可确定出f(A)的范围.【解答】解:(1)f(x)=﹣+sin2x=sin2x﹣cos2x=sin(2x﹣),令2kπ﹣≤2x﹣≤2kπ+,k∈Z,得到﹣+kπ≤x≤+kπ,k∈Z,则f(x)的增区间为[﹣+kπ,+kπ](k∈Z);(2)由余弦定理得:cosA=,即b2+c2﹣a2=2bccosA,代入已知不等式得:2bccosA>bc,即cosA>,∵A为△ABC内角,∴0<A<,∵f(A)=sin(2A﹣),且﹣<2A﹣<,∴﹣<f(A)<,则f(A)的范围为(﹣,).21.(12分)
甲、乙两人在罚球线投球命中的概率分别为.
(Ⅰ)甲、乙两人在罚球线各投球一次,求恰好命中一次的概率;(Ⅱ)甲、乙两人在罚球线各投球二次,求这四次投球中至少一次命中的概率.参考答案:解析:(Ⅰ)依题意,记“甲投一次命中”为事件A,“乙投一次命中”为事件B,则P(A)=,P(B)=,P()=,P()=甲、乙两人在罚球线各投球一次,求恰好命中一次的事件为P()=P()+P()=答:甲、乙两人在罚球线各投球一次,求恰好命中一次的概率为(Ⅱ)∵事件“甲、乙两人在罚球线各投球二次不命中”的概率是∴甲、乙两人在罚球线各投球二次,至少有一次命中的概率为P=1-=1-答:甲、乙两人在罚球线各投球二次,至少有一次命中的概率为22.为积极响应国家“阳光体育运动”的号召,某学校在了解到学生的实际运动情况后,发起以“走出教室,走到操场,走到阳光”为口号的课外活动倡议.为调查该校学生每周平均体育运动时间的情况,从高一高二基础年级与高三三个年级学生中按照4:3:3的比例分层抽样,收集300位学生每周平均体育运动时间的样本数据(单位:小时),得到如图所示的频率分布直方图.(1)据图估计该校学生每周平均体育运动时间.并估计高一年级每周平均体育运动时间不足4小时的人数;(2)规定每周平均体育运动时间不少于6小时记为“优秀”,否则为“非优秀”,在样本数据中,有30位高三学生的每周平均体育运动时间不少于6小时,请完成下列2×2列联表,并判断是否有99%的把握认为“该校学生的每周平均体育运动时间是否“优秀”与年级有关.”
基础年级高三合计优秀
非优秀
合计
300
附:.参考数据:0.1000.0500.0100.0052.7063.8416.6357.879
参考答案:(1)运动时间5.8小时,人数30人(2)见解析【分析】(1)由频率直方图求出各组频率,利用平均数公式计算平均体育运动时间,再利用分层抽样中的比例计算高一年级的总人数,再由频率直方图前两组频率计算高
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 银行大润发活动方案策划书3篇
- 安全演讲稿模板锦集五篇
- 关于动物的英语
- 第17课《第二次世界大战》中职高一下学期高教版(2023)世界历史全一册
- 颈椎病术后护理诊断及措施
- 汽车维修临时工聘用协议模板
- 医院合作协议范本
- 老年健康捐赠实施准则
- 环保企业技术人员合同样本
- 旅游景点配奶服务准则
- 生活中的工业设计智慧树知到期末考试答案章节答案2024年南开大学
- 国开2023年春《理工英语3》机考网考期末复习资料参考答案
- 2022年山东省特种设备作业安全管理人员证考试题库(含答案)
- 人员退出机制
- 劳务分包施工组织设计
- 蜂产品订购合同范本
- 重卡用前面罩四连杆铰链设计解析
- 物业个人工作总结及计划五篇
- 桩承载力计算(抗压、抗拔、水平、压屈)
- 热裂解炭黑N990市场调查
- 行政管理之印章管理PPT优秀课件
评论
0/150
提交评论