




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
大题创新题精练02数列冲刺2024高考数学【突破新题型】(原卷)【前言】自九省联考新题型以来,各地模拟卷题目发生根本性变化。数列主要发生以下变化:(1)2小问变成3小问,(2)数列与三角函数综合,(3)强化数列与概率统计综合,(4)数列与导数综合,(5)数列新定义题目层出不穷。题型探究目录【题型一】数列与三角函数综合【题型二】数列与概率统计综合【题型三】数列与导数综合【题型四】数列新定义题知识温习(略)1.Sn与an的关系an=S2.等差数列(1)递推公式:an+1an=d(n∈N*)或anan1=d(n≥2,n∈N*)(2)中项性质:a,A,b成等差数列⇔2A=a+b⇔A=a+b2(3)通项公式:an=a1+(n1)d.(4)前n项和:已知首项、末项与项数,则Sn=n(a已知首项、公差与项数,则Sn=na1+n(n−1)23.等比数列递推公式:an+1an=q(n∈N*)或a通项公式:an=a1qn1.中项性质:在等比数列{an}中,若k+l=m+n(k,l,m,n∈N*),则akal=aman.特别地,若m+n=2r(m,n,r∈N*),则aman=ar前n项和公式:已知首项、公比与项数,Sn=a1(1已知首项、末项与公比Sn=a各个击破【题型一】数列与三角函数综合【知识回顾】(略)1.(2024·浙江台州·二模)已知数列满足,.(1)求(只需写出数值,不需要证明);(2)若数列的通项可以表示成的形式,求,.2.(2024·广东·二模)已知正项数列,满足(其中).(1)若,且,证明:数列和均为等比数列;(2)若,以为三角形三边长构造序列(其中),记外接圆的面积为,证明:;(3)在(2)的条件下证明:数列是递减数列.3.(2024·上海青浦·二模)若无穷数列满足:存在正整数,使得对一切正整数成立,则称是周期为的周期数列.(1)若(其中正整数m为常数,),判断数列是否为周期数列,并说明理由;(2)若,判断数列是否为周期数列,并说明理由;(3)设是无穷数列,已知.求证:“存在,使得是周期数列”的充要条件是“是周期数列”.【题型二】数列与概率统计综合【知识回顾】(略)4.(2024·贵州贵阳·模拟预测)甲乙两人组成“星队”参加猜成语活动,每轮活动由甲乙各猜一个成语,已知甲、乙第一轮猜对的概率都为.甲如果第轮猜对,则他第轮也猜对的概率为,如果第k轮猜错,则他第轮也猜错的概率为;乙如果第k轮猜对,则他第轮也猜对的概率为,如果第k轮猜错,则他第轮也猜错的概率为.在每轮活动中,甲乙猜对与否互不影响.(1)若前两轮活动中第二轮甲乙都猜对成语,求两人第一轮也都猜对成语的概率;(2)若一条信息有种可能的情形且各种情形互斥,每种情形发生的概率分别为,,,,则称为该条信息的信息熵(单位为比特),用于量度该条信息的复杂程度.试求甲乙两人在第二轮活动中猜对成语的个数X的信息熵H;(3)如果“星队”在每一轮中活动至少有一人猜对成语,游戏就可以一直进行下去,直到他们都猜错为止.设停止游戏时“星队”进行了Y轮游戏,求证:.5.(2024·黑龙江哈尔滨·一模)据统计,2024年元旦假期,哈尔滨市累计接待游客304.79万人次,实现旅游总收入59.14亿元,游客接待量与旅游总收入达到历史峰值.现对某一时间段冰雪大世界的部分游客做问卷调查,其中的游客计划只游览冰雪大世界,另外的游客计划既游览冰雪大世界又参观群力音乐公园大雪人.每位游客若只游览冰雪大世界,则得到1份文旅纪念品;若既游览冰雪大世界又参观群力音乐公园大雪人,则获得2份文旅纪念品.假设每位来冰雪大世界景区游览的游客与是否参观群力音乐公园大雪人是相互独立的,用频率估计概率.(1)从冰雪大世界的游客中随机抽取3人,记这3人获得文旅纪念品的总个数为,求的分布列及数学期望;(2)记个游客得到文旅纪念品的总个数恰为个的概率为,求的前项和;(3)从冰雪大世界的游客中随机抽取100人,这些游客得到纪念品的总个数恰为个的概率为,当取最大值时,求的值.6.(2024·山西朔州·一模)甲、乙、丙、丁四人练习传球,每次由一人随机传给另外三人中的一人称为一次传球,已知甲首先发球,连续传球次后,记事件“乙、丙、丁三人均被传到球”的概率为.(1)当时,求球又回到甲手中的概率;(2)当时,记乙、丙、丁三人中被传到球的人数为随机变量,求的分布列与数学期望;(3)记,求证:数列从第3项起构成等比数列,并求.7.(2024·黑龙江哈尔滨·一模)入冬以来,东北成为全国旅游和网络话题的“顶流”.南方的小土豆们纷纷北上体验东北最美的冬天,这个冬天火的不只是东北的美食、东北人的热情,还有东北的洗浴中心,拥挤程度堪比春运,南方游客直接拉着行李箱进入.东北某城市洗浴中心花式宠“且”,为给顾客更好的体验,推出了和两个套餐服务,顾客可自由选择和两个套餐之一,并在App平台上推出了优惠券活动,下表是该洗浴中心在App平台10天销售优惠券情况.日期12345678910销售量(千张)1.91.982.22.362.432.592.682.762.70.4经计算可得:,,.(1)因为优惠券购买火爆,App平台在第10天时系统出现异常,导致当天顾客购买优惠券数量大幅减少,现剔除第10天数据,求关于的经验回归方程(结果中的数值用分数表示);(2)若购买优惠券的顾客选择套餐的概率为,选择套餐的概率为,并且套餐可以用一张优惠券,套餐可以用两张优惠券,记App平台累计销售优惠券为张的概率为,求;(3)记(2)中所得概率的值构成数列.①求的最值;②数列收敛的定义:已知数列,若对于任意给定的正数,总存在正整数,使得当时,,(是一个确定的实数),则称数列收敛于.根据数列收敛的定义证明数列收敛.参考公式:,.8.(2024·湖北武汉·二模)甲口袋中装有2个黑球和1个白球,乙口袋中装有1个黑球和2个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,称为1次球交换的操作,重复次这样的操作,记甲口袋中黑球个数为.(1)求的概率分布列并求;(2)求证:(且)为等比数列,并求出(且).【题型三】数列与导数综合【知识回顾】(略)9.(2024高三·江苏·专题练习)定义首项为1且公比为正数的等比数列为“数列”.(1)已知等比数列满足:,求证:数列为“数列”;(2)已知数列满足:,其中为数列的前项和.①求数列的通项公式;②设为正整数,若存在“数列”,对任意正整数,当时,都有成立,求的最大值.10.(2324高三上·上海闵行·期中)已知(为实常数)(1)当时,求函数的最小值;(2)若对一切都成立,求的取值范围;(3)设各项为正的无穷数列满足,证明:.(提示:当时,)11.(2023高三·全国·专题练习)已知.(1)证明:对任意,.(2)若,,证明:单调递减,且.12.(2023·山东潍坊·模拟预测)已知函数的图像在点处的切线与直线垂直.(1)满足的关系式;(2)若在上恒成立,求的取值范围;(3)证明:.【题型四】数列新定义题【知识回顾】(略)13.(2024·北京东城·一模)有穷数列中,令,(1)已知数列,写出所有的有序数对,且,使得;(2)已知整数列为偶数,若,满足:当为奇数时,;当为偶数时,.求的最小值;(3)已知数列满足,定义集合.若且为非空集合,求证:.14.(2024·福建泉州·模拟预测)表示正整数a,b的最大公约数,若,且,,则将k的最大值记为,例如:,.(1)求,,;(2)已知时,.(i)求;(ii)设,数列的前n项和为,证明:.15.(2024·广东梅州·二模)已知是由正整数组成的无穷数列,该数列前项的最大值记为,即;前项的最小值记为,即,令(),并将数列称为的“生成数列”.(1)若,求其生成数列的前项和;(2)设数列的“生成数列”为,求证:;(3)若是等差数列,证明:存在正整数,当时,,,,是等差数列.16.(2024·吉林长春·三模)入冬以来,东北成为全国旅游话题的“顶流”.南方游客纷纷北上,体验东北最美的冬天.某景区为给顾客更好的体验,推出了A和B两个套餐服务,并在购票平台上推出了优惠券活动,顾客可自由选择A和B两个套餐之一,下表是该景区在购票平台10天销售优惠券情况.日期t12345678910销售量y(千张)1.91.982.22.362.432.592.682.762.70.4经计算可得:,,.(1)由于同时在线人数过多,购票平台在第10天出现网络拥堵,导致当天顾客购买的优惠券数量大幅减少,现剔除第10天数据,求y关于t的回归方程(精确到0.01),并估计第10天的正常销量;(2)假设每位顾客选择A套餐的概率为,选择B套餐的概率为,其中A套餐包含一张优惠券,B套餐包含两张优惠券,截止某一时刻,该平台恰好销售了n张优惠券,设其概率为,求;(3)记(2)中所得概率的值构成数列.①求数列的最值;②数列收敛的定义:已知数列,若对于任意给定的正数ε,总存在正整数,使得当时,,(a是一个确定的实数),则称数列收敛于a.根据数列收敛的定义证明数列收敛.回归方程中斜率和截距的最小二乘估计公式分别为:,.17.(2024·湖南岳阳·二模)已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是,接下来的两项是,,再接下来的三项是,,,依此类推.设该数列的前项和为,规定:若,使得,则称为该数列的“佳幂数”.(1)将该数列的“佳幂数”从小到大排列,直接写出前4个“佳幂数”;(2)试判断50是否为“佳幂数”,并说明理由;(3)(ⅰ)求满足的最小的“佳幂数”;(ⅱ)证明:该数列的“佳幂数”有无数个.18.(2024·河南开封·二模)在密码学领域,欧拉函数是非常重要的,其中最著名的应用就是在RSA加密算法中的应用.设p,q是两个正整数,若p,q的最大公约数是1,则称p,q互素.对于任意正整数n,欧拉函数是不超过n且与n互素的正整数的个数,记为.(1)试
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 纺织品及针织品市场营销策划考核试卷
- 2024年的微生物研究新方向试题及答案
- 2025年【保育员(高级)】模拟考试题及答案
- 玉米种植农业产业链现代化推进考核试卷
- 磨制谷物在农业与食品安全产业协同发展的社会效益考核试卷
- 工业自动化与智能港口运营考核试卷
- 2023年中国电信宁波分公司杭州湾新区分局招聘笔试参考题库附带答案详解
- 全部土方外运 施工方案
- 稀有金属加工中的企业社会责任与环境保护措施实施考核试卷
- 生物质能发电与气候变化适应性考核试卷
- 2024北京十一学校初二(下)期中数学试题及答案
- 教师资格笔试教育数字化转型的挑战与对策分析试题及答案
- 劳务合同挂靠协议
- 跨境电商平台下的中国二手车出口模式
- 2024国家电投集团中国电力招聘(22人)笔试参考题库附带答案详解
- 树立正确的婚恋观讲座课件
- 急性阑尾炎中医护理查房
- 【罗兰贝格】2025全球医疗器械报告-创新与效率平衡之道
- 居间费用分配协议
- 2023-2024学年福建省福州市四年级(下)期中数学试卷
- 造纸工(工艺基础)职业资格知识考试题(附答案)
评论
0/150
提交评论