![2024届江西省九江市修水县重点名校中考数学四模试卷含解析_第1页](http://file4.renrendoc.com/view5/M00/2B/22/wKhkGGY5YoeAcSovAAH995VQnvw883.jpg)
![2024届江西省九江市修水县重点名校中考数学四模试卷含解析_第2页](http://file4.renrendoc.com/view5/M00/2B/22/wKhkGGY5YoeAcSovAAH995VQnvw8832.jpg)
![2024届江西省九江市修水县重点名校中考数学四模试卷含解析_第3页](http://file4.renrendoc.com/view5/M00/2B/22/wKhkGGY5YoeAcSovAAH995VQnvw8833.jpg)
![2024届江西省九江市修水县重点名校中考数学四模试卷含解析_第4页](http://file4.renrendoc.com/view5/M00/2B/22/wKhkGGY5YoeAcSovAAH995VQnvw8834.jpg)
![2024届江西省九江市修水县重点名校中考数学四模试卷含解析_第5页](http://file4.renrendoc.com/view5/M00/2B/22/wKhkGGY5YoeAcSovAAH995VQnvw8835.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江西省九江市修水县重点名校中考数学四模试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.光年天文学中的距离单位,1光年大约是9500000000000km,用科学记数法表示为A. B. C. D.2.估算的运算结果应在(
)A.2到3之间 B.3到4之间C.4到5之间 D.5到6之间3.如图,为测量一棵与地面垂直的树OA的高度,在距离树的底端30米的B处,测得树顶A的仰角∠ABO为α,则树OA的高度为()A.米 B.30sinα米 C.30tanα米 D.30cosα米4.已知地球上海洋面积约为361000000km2,361000000这个数用科学记数法可表示为()A.3.61×106 B.3.61×107 C.3.61×108 D.3.61×1095.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是()A.84 B.336 C.510 D.13266.某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店()A.赚了10元 B.赔了10元 C.赚了50元 D.不赔不赚7.如图,在平面直角坐标系中,矩形ABOC的两边在坐标轴上,OB=1,点A在函数y=﹣(x<0)的图象上,将此矩形向右平移3个单位长度到A1B1O1C1的位置,此时点A1在函数y=(x>0)的图象上,C1O1与此图象交于点P,则点P的纵坐标是()A. B. C. D.8.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为弧BD的中点,若∠DAB=50°,则∠ABC的大小是()A.55° B.60° C.65° D.70°9.若55+55+55+55+55=25n,则n的值为()A.10 B.6 C.5 D.310.如图,用一个半径为6cm的定滑轮带动重物上升,假设绳索(粗细不计)与滑轮之间没有滑动,绳索端点G向下移动了3πcm,则滑轮上的点F旋转了()A.60° B.90° C.120° D.45°二、填空题(共7小题,每小题3分,满分21分)11.将一副三角板如图放置,若,则的大小为______.12.一机器人以0.2m/s的速度在平地上按下图中的步骤行走,那么该机器人从开始到停止所需时间为__s.13.已知一组数据:3,3,4,5,5,则它的方差为____________14.关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不相等的实根,则实数k的取值范围是_____.15.已知一个斜坡的坡度,那么该斜坡的坡角的度数是______.16.计算:____________17.如图,直线a∥b,∠l=60°,∠2=40°,则∠3=_____.三、解答题(共7小题,满分69分)18.(10分)如图1,正方形ABCD的边长为8,动点E从点D出发,在线段DC上运动,同时点F从点B出发,以相同的速度沿射线AB方向运动,当点E运动到终点C时,点F也停止运动,连接AE交对角线BD于点N,连接EF交BC于点M,连接AM.(参考数据:sin15°=,cos15°=,tan15°=2﹣)(1)在点E、F运动过程中,判断EF与BD的位置关系,并说明理由;(2)在点E、F运动过程中,①判断AE与AM的数量关系,并说明理由;②△AEM能为等边三角形吗?若能,求出DE的长度;若不能,请说明理由;(3)如图2,连接NF,在点E、F运动过程中,△ANF的面积是否变化,若不变,求出它的面积;若变化,请说明理由.19.(5分)解方程:(x﹣3)(x﹣2)﹣4=1.20.(8分)在“一带一路”战略的影响下,某茶叶经销商准备把“茶路”融入“丝路”,经计算,他销售10kgA级别和20kgB级别茶叶的利润为4000元,销售20kgA级别和10kgB级别茶叶的利润为3500元.(1)求每千克A级别茶叶和B级别茶叶的销售利润;(2)若该经销商一次购进两种级别的茶叶共200kg用于出口,其中B级别茶叶的进货量不超过A级别茶叶的2倍,请你帮该经销商设计一种进货方案使销售总利润最大,并求出总利润的最大值.21.(10分)如图,在正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边上的动点,且AE=BF=CG=DH.(1)求证:△AEH≌△CGF;(2)在点E、F、G、H运动过程中,判断直线EG是否经过某一个定点,如果是,请证明你的结论;如果不是,请说明理由22.(10分)关于x的一元二次方程有两个实数根,则m的取值范围是()A.m≤1 B.m<1 C.﹣3≤m≤1 D.﹣3<m<123.(12分)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.求证:△AEC≌△BED;若∠1=40°,求∠BDE的度数.24.(14分)某同学报名参加学校秋季运动会,有以下5个项目可供选择:径赛项目:100m、200m、1000m(分别用A1、A2、A3表示);田赛项目:跳远,跳高(分别用T1、T2表示).该同学从5个项目中任选一个,恰好是田赛项目的概率P为;该同学从5个项目中任选两个,求恰好是一个径赛项目和一个田赛项目的概率P1,利用列表法或树状图加以说明;该同学从5个项目中任选两个,则两个项目都是径赛项目的概率P2为.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】
科学记数法的表示形式为的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将9500000000000km用科学记数法表示为.故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2、D【解析】
解:=,∵2<<3,∴在5到6之间.故选D.【点睛】此题主要考查了估算无理数的大小,正确进行计算是解题关键.3、C【解析】试题解析:在Rt△ABO中,∵BO=30米,∠ABO为α,∴AO=BOtanα=30tanα(米).故选C.考点:解直角三角形的应用-仰角俯角问题.4、C【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.解答:解:将361000000用科学记数法表示为3.61×1.故选C.5、C【解析】由题意满七进一,可得该图示为七进制数,化为十进制数为:1×73+3×72+2×7+6=510,故选:C.点睛:本题考查记数的方法,注意运用七进制转化为十进制,考查运算能力,属于基础题.6、A【解析】试题分析:第一个的进价为:80÷(1+60%)=50元,第二个的进价为:80÷(1-20%)=100元,则80×2-(50+100)=10元,即盈利10元.考点:一元一次方程的应用7、C【解析】分析:先求出A点坐标,再根据图形平移的性质得出A1点的坐标,故可得出反比例函数的解析式,把O1点的横坐标代入即可得出结论.详解:∵OB=1,AB⊥OB,点A在函数(x<0)的图象上,∴当x=−1时,y=2,∴A(−1,2).∵此矩形向右平移3个单位长度到的位置,∴B1(2,0),∴A1(2,2).∵点A1在函数(x>0)的图象上,∴k=4,∴反比例函数的解析式为,O1(3,0),∵C1O1⊥x轴,∴当x=3时,∴P故选C.点睛:考查反比例函数图象上点的坐标特征,坐标与图形变化-平移,解题的关键是运用双曲线方程求出点A的坐标,利用平移的性质求出点A1的坐标.8、C【解析】连接OC,因为点C为弧BD的中点,所以∠BOC=∠DAB=50°,因为OC=OB,所以∠ABC=∠OCB=65°,故选C.9、D【解析】
直接利用提取公因式法以及幂的乘方运算法则将原式变形进而得出答案.【详解】解:∵55+55+55+55+55=25n,∴55×5=52n,则56=52n,解得:n=1.故选D.【点睛】此题主要考查了幂的乘方运算,正确将原式变形是解题关键.10、B【解析】
由弧长的计算公式可得答案.【详解】解:由圆弧长计算公式,将l=3π代入,可得n=90,故选B.【点睛】本题主要考查圆弧长计算公式,牢记并运用公式是解题的关键.二、填空题(共7小题,每小题3分,满分21分)11、160°【解析】试题分析:先求出∠COA和∠BOD的度数,代入∠BOC=∠COA+∠AOD+∠BOD求出即可.解:∵∠AOD=20°,∠COD=∠AOB=90°,∴∠COA=∠BOD=90°﹣20°=70°,∴∠BOC=∠COA+∠AOD+∠BOD=70°+20°+70°=160°,故答案为160°.考点:余角和补角.12、240【解析】根据图示,得出机器人的行走路线是沿着一个正八边形的边长行走一周,是解决本题的关键,考察了计算多边形的周长,本题中由于机器人最后必须回到起点,可知此机器人一共转了360°,我们可以计算机器人所转的回数,即360°÷45°=8,则机器人的行走路线是沿着一个正八边形的边长行走一周,故机器人一共行走6×8=48m,根据时间=路程÷速度,即可得出结果.本题解析:依据题中的图形,可知机器人一共转了360°,∵360°÷45°=8,∴机器人一共行走6×8=48m.∴该机器人从开始到停止所需时间为48÷0.2=240s.13、【解析】根据题意先求出这组数据的平均数是:(3+3+4+5+5)÷5=4,再根据方差公式求出这组数据的方差为:×[(3–4)2+(3–4)2+(4–4)2+(5–4)2+(5–4)2]=.故答案为.14、k>【解析】
由方程根的情况,根据根的判别式可得到关于k的不等式,则可求得k的取值范围.【详解】∵关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不相等的实根,∴△>0,即(2k+1)2-4(k2+1)>0,解得k>,故答案为k>.【点睛】本题主要考查根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键.15、【解析】
坡度=坡角的正切值,据此直接解答.【详解】解:∵,∴坡角=30°.【点睛】此题主要考查学生对坡度及坡角的理解及掌握.16、y【解析】
根据幂的乘方和同底数幂相除的法则即可解答.【详解】【点睛】本题考查了幂的乘方和同底数幂相除,熟练掌握:幂的乘方,底数不变,指数相乘的法则及同底数幂相除,底数不变,指数相减是关键.17、80°【解析】
根据平行线的性质求出∠4,根据三角形内角和定理计算即可.【详解】解:∵a∥b,∴∠4=∠l=60°,∴∠3=180°-∠4-∠2=80°,故答案为:80°.【点睛】本题考查的是平行线的性质、三角形内角和定理,掌握两直线平行,同位角相等是解题的关键.三、解答题(共7小题,满分69分)18、(1)EF∥BD,见解析;(2)①AE=AM,理由见解析;②△AEM能为等边三角形,理由见解析;(3)△ANF的面积不变,理由见解析【解析】
(1)依据DE=BF,DE∥BF,可得到四边形DBFE是平行四边形,进而得出EF∥DB;(2)依据已知条件判定△ADE≌△ABM,即可得到AE=AM;②若△AEM是等边三角形,则∠EAM=60°,依据△ADE≌△ABM,可得∠DAE=∠BAM=15°,即可得到DE=16-8,即当DE=16−8时,△AEM是等边三角形;(3)设DE=x,过点N作NP⊥AB,反向延长PN交CD于点Q,则NQ⊥CD,依据△DEN∽△BNA,即可得出PN=,根据S△ANF=AF×PN=×(x+8)×=32,可得△ANF的面积不变.【详解】解:(1)EF∥BD.证明:∵动点E从点D出发,在线段DC上运动,同时点F从点B出发,以相同的速度沿射线AB方向运动,∴DE=BF,又∵DE∥BF,∴四边形DBFE是平行四边形,∴EF∥DB;(2)①AE=AM.∵EF∥BD,∴∠F=∠ABD=45°,∴MB=BF=DE,∵正方形ABCD,∴∠ADC=∠ABC=90°,AB=AD,∴△ADE≌△ABM,∴AE=AM;②△AEM能为等边三角形.若△AEM是等边三角形,则∠EAM=60°,∵△ADE≌△ABM,∴∠DAE=∠BAM=15°,∵tan∠DAE=,AD=8,∴2﹣=,∴DE=16﹣8,即当DE=16﹣8时,△AEM是等边三角形;(3)△ANF的面积不变.设DE=x,过点N作NP⊥AB,反向延长PN交CD于点Q,则NQ⊥CD,∵CD∥AB,∴△DEN∽△BNA,∴=,∴,∴PN=,∴S△ANF=AF×PN=×(x+8)×=32,即△ANF的面积不变.【点睛】本题属于四边形综合题,主要考查了平行四边形的判定与性质,等边三角形的性质,全等三角形的判定与性质,解直角三角形以及相似三角形的判定与性质的综合运用,解决问题的关键是作辅助线构造相似三角形,利用全等三角形的对应边相等,相似三角形的对应边成比例得出结论.19、x1=,x2=【解析】试题分析:方程整理为一般形式,找出a,b,c的值,代入求根公式即可求出解.试题解析:解:方程化为,,,.>1..即,.20、(1)100元和150元;(2)购进A种级别的茶叶67kg,购进B种级别的茶叶133kg.销售总利润最大为26650元.【解析】试题分析:(1)设每千克A级别茶叶和B级别茶叶的销售利润分别为x元和y元;
(2)设购进A种级别的茶叶akg,购进B种级别的茶叶(200-a)kg.销售总利润为w元.构建一次函数,利用一次函数的性质即可解决问题.试题解析:解:(1)设每千克A级别茶叶和B级别茶叶的销售利润分别为x元和y元.由题意,解得,答:每千克A级别茶叶和B级别茶叶的销售利润分别为100元和150元.(2)设购进A种级别的茶叶akg,购进B种级别的茶叶(200﹣a)kg.销售总利润为w元.由题意w=100a+150(200﹣a)=﹣50a+30000,∵﹣50<0,∴w随x的增大而减小,∴当a取最小值,w有最大值,∵200﹣a≤2a,∴a≥,∴当a=67时,w最小=﹣50×67+30000=26650(元),此时200﹣67=133kg,答:购进A种级别的茶叶67kg,购进B种级别的茶叶133kg.销售总利润最大为26650元.点睛:本题考查一次函数的应用、二元一次方程组、不等式等知识,解题的关键是理解题意,学会利用参数构建一次函数或方程解决问题.21、(1)见解析;(2)直线EG经过一个定点,这个定点为正方形的中心(AC、BD的交点);理由见解析.【解析】分析:(1)由正方形的性质得出∠A=∠C=90°,AB=BC=CD=DA,由AE=BF=CG=DH证出AH=CF,由SAS证明△AEH≌△CGF即可求解;(2)连接AC、EG,交点为O;先证明△AOE≌△COG,得出OA=OC,证出O为对角线AC、BD的交点,即O为正方形的中心.详解:(1)证明:∵四边形ABCD是正方形,∴∠A=∠C=90°,AB=BC=CD=DA,∵AE=BF=CG=DH,∴AH=CF,在△AEH与△CGF中,AH=CF,∠A=∠C,AE=CG,∴△AEH≌△CGF(SAS);(2)直线EG经过一个定点,这个定点为正方形的中心(AC、BD的交点);理由如下:连接AC、EG,交点为O;如图所示:∵四边形ABCD是正方形,∴AB∥CD,∴∠OAE=∠OCG,在△AOE和△COG中,∠OAE=∠OCG,∠AOE=∠COG,AE=CG,∴△AOE≌△COG(AAS),∴OA=OC,OE=OG,即O为AC的中点,∵正方形的对角线互相平分,∴O为对角线AC、BD的交点,即O为正方形的中心.点睛:考查了正方形的性质与判定、全等三角形的判定与性质等知识;本题综合性强,有一定难度,特别是(2)中,需要通过作辅助线证明三角形全等才能得出结果.22、C【解析】
利用二次根式有意义的条件和判别式的意义得到,然后解不等式组即可.【详解】根据题意得,解得-3≤m≤1.故选C.【点睛
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《过程检测技术》课件2
- 《车桥系统知识》课件
- 《彼得德鲁克简介》课件
- 癌症浅谈课件
- 国际海上货物运输课件内部教材
- 环境监测站-大气分析练习试题附答案
- 《发达的古代农业》课件
- 《食品安全中英》课件
- 《ETF股票换购攻略》课件
- 《dca教材罗少卿》课件
- 《客户服务基础》教案及课件项
- 2025年湖南工业职业技术学院高职单招职业技能测试近5年常考版参考题库含答案解析
- 物理(A版)-安徽省合肥一中(省十联考)2024-2025学年度高二年级上学期期末测试试题和答案
- 智能RPA财务机器人开发教程-基于来也UiBot 课件 第1章-机器人流程自动化概述
- 2024-2025学年天津市河东区高一上学期期末质量检测数学试卷(含答案)
- 信永中和笔试题库及答案
- 甲流乙流培训课件
- 《视网膜静脉阻塞》课件
- 数学史简介课件
- 2025《省建设工程档案移交合同书(责任书)》
- 八年级 下册《黄河两岸的歌(1)》课件
评论
0/150
提交评论