2024届四川省泸州泸县联考中考数学模试卷含解析_第1页
2024届四川省泸州泸县联考中考数学模试卷含解析_第2页
2024届四川省泸州泸县联考中考数学模试卷含解析_第3页
2024届四川省泸州泸县联考中考数学模试卷含解析_第4页
2024届四川省泸州泸县联考中考数学模试卷含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届四川省泸州泸县联考中考数学模试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列计算正确的是()A.(﹣2a)2=2a2 B.a6÷a3=a2C.﹣2(a﹣1)=2﹣2a D.a•a2=a22.对于有理数x、y定义一种运算“Δ”:xΔy=ax+by+c,其中a、b、c为常数,等式右边是通常的加法与乘法运算,已知3Δ5=15,4Δ7=28,则1Δ1的值为()A.-1 B.-11 C.1 D.113.抛物线y=mx2﹣8x﹣8和x轴有交点,则m的取值范围是()A.m>﹣2 B.m≥﹣2 C.m≥﹣2且m≠0 D.m>﹣2且m≠04.在平面直角坐标系中,点P(m,2m-2),则点P不可能在()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.不等式组的解集是()A.x>-1 B.x>3C.-1<x<3 D.x<36.如图,四边形ABCD是边长为1的正方形,动点E、F分别从点C,D出发,以相同速度分别沿CB,DC运动(点E到达C时,两点同时停止运动).连接AE,BF交于点P,过点P分别作PM∥CD,PN∥BC,则线段MN的长度的最小值为()A. B. C. D.17.如图,在中,,,,则等于()A. B. C. D.8.哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x岁,哥哥的年龄是y岁,下列方程组正确的是()A.x=y-18y-x=18-yB.C.x+y=18y-x=18+yD.9.初三(1)班的座位表如图所示,如果如图所示建立平面直角坐标系,并且“过道也占一个位置”,例如小王所对应的坐标为(3,2),小芳的为(5,1),小明的为(10,2),那么小李所对应的坐标是()A.(6,3) B.(6,4) C.(7,4) D.(8,4)10.五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是()A.2、40B.42、38C.40、42D.42、4011.如图,已知函数与的图象在第二象限交于点,点在的图象上,且点B在以O点为圆心,OA为半径的上,则k的值为A. B. C. D.12.据统计,2018年全国春节运输人数约为3000000000人,将3000000000用科学记数法表示为()A.0.3×1010B.3×109C.30×108D.300×107二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知线段AB=10cm,C为线段AB的黄金分割点(AC>BC),则BC=_____.14.将数轴按如图所示从某一点开始折出一个等边三角形ABC,设点A表示的数为x﹣3,点B表示的数为2x+1,点C表示的数为﹣4,若将△ABC向右滚动,则x的值等于_____,数字2012对应的点将与△ABC的顶点_____重合.15.如图,⊙O的半径为6,四边形ABCD内接于⊙O,连接OB,OD,若∠BOD=∠BCD,则弧BD的长为________.16.如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD的长为______.17.不等式组的解集是▲.18.如图,圆O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=4,CD的长为________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)深圳某书店为了迎接“读书节”制定了活动计划,以下是活动计划书的部分信息:“读书节“活动计划书书本类别科普类文学类进价(单位:元)1812备注(1)用不超过16800元购进两类图书共1000本;科普类图书不少于600本;…(1)已知科普类图书的标价是文学类图书标价的1.5倍,若顾客用540元购买的图书,能单独购买科普类图书的数量恰好比单独购买文学类图书的数量少10本,请求出两类图书的标价;经市场调査后发现:他们高估了“读书节”对图书销售的影响,便调整了销售方案,科普类图书每本标价降低a(0<a<5)元销售,文学类图书价格不变,那么书店应如何进货才能获得最大利润?20.(6分)在星期一的第八节课,我校体育老师随机抽取了九年级的总分学生进行体育中考的模拟测试,并对成绩进行统计分析,绘制了频数分布表和统计图,按得分划分成A、B、C、D、E、F六个等级,并绘制成如下两幅不完整的统计图表.等级得分x(分)频数(人)A95<x≤1004B90<x≤95mC85<x≤90nD80<x≤8524E75<x≤808F70<x≤754请你根据图表中的信息完成下列问题:(1)本次抽样调查的样本容量是.其中m=,n=.(2)扇形统计图中,求E等级对应扇形的圆心角α的度数;(3)我校九年级共有700名学生,估计体育测试成绩在A、B两个等级的人数共有多少人?(4)我校决定从本次抽取的A等级学生(记为甲、乙、丙、丁)中,随机选择2名成为学校代表参加全市体能竞赛,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率.21.(6分)小李在学习了定理“直角三角形斜边上的中线等于斜边的一半”之后做了如下思考,请你帮他完成如下问题:他认为该定理有逆定理:“如果一个三角形某条边上的中线等于该边长的一半,那么这个三角形是直角三角形”应该成立.即如图①,在中,是边上的中线,若,求证:.如图②,已知矩形,如果在矩形外存在一点,使得,求证:.(可以直接用第(1)问的结论)在第(2)问的条件下,如果恰好是等边三角形,请求出此时矩形的两条邻边与的数量关系.22.(8分)某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(x≥2)个羽毛球,供社区居民免费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:A超市:所有商品均打九折(按标价的90%)销售;B超市:买一副羽毛球拍送2个羽毛球.设在A超市购买羽毛球拍和羽毛球的费用为yA(元),在B超市购买羽毛球拍和羽毛球的费用为yB(元).请解答下列问题:分别写出yA、yB与x之间的关系式;若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.23.(8分)如图,已知△ABC内接于,AB是直径,OD∥AC,AD=OC.(1)求证:四边形OCAD是平行四边形;(2)填空:①当∠B=时,四边形OCAD是菱形;②当∠B=时,AD与相切.24.(10分)如图所示,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,EC的延长线交BD于点P.(1)把△ABC绕点A旋转到图1,BD,CE的关系是(选填“相等”或“不相等”);简要说明理由;(2)若AB=3,AD=5,把△ABC绕点A旋转,当∠EAC=90°时,在图2中作出旋转后的图形,PD=,简要说明计算过程;(3)在(2)的条件下写出旋转过程中线段PD的最小值为,最大值为.25.(10分)某校诗词知识竞赛培训活动中,在相同条件下对甲、乙两名学生进行了10次测验,他们的10次成绩如下(单位:分):整理、分析过程如下,请补充完整.(1)按如下分数段整理、描述这两组数据:成绩x学生70≤x≤7475≤x≤7980≤x≤8485≤x≤8990≤x≤9495≤x≤100甲____________________________________乙114211(2)两组数据的极差、平均数、中位数、众数、方差如下表所示:学生极差平均数中位数众数方差甲______83.7______8613.21乙2483.782______46.21(3)若从甲、乙两人中选择一人参加知识竞赛,你会选______(填“甲”或“乙),理由为______.26.(12分)如图,△ABC中,点D在边AB上,满足∠ACD=∠ABC,若AC=,AD=1,求DB的长.27.(12分)先化简,再求值:,其中x=-5

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解析】

解:选项A,原式=;选项B,原式=a3;选项C,原式=-2a+2=2-2a;选项D,原式=故选C2、B【解析】

先由运算的定义,写出3△5=25,4△7=28,得到关于a、b、c的方程组,用含c的代数式表示出a、b.代入2△2求出值.【详解】由规定的运算,3△5=3a+5b+c=25,4a+7b+c=28所以3a+5b+c=解这个方程组,得a所以2△2=a+b+c=-35-2c+24+c+c=-2.故选B.【点睛】本题考查了新运算、三元一次方程组的解法.解决本题的关键是根据新运算的意义,正确的写出3△5=25,4△7=28,2△2.3、C【解析】

根据二次函数的定义及抛物线与x轴有交点,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围.【详解】解:∵抛物线和轴有交点,,解得:且.故选.【点睛】本题考查了抛物线与x轴的交点、二次函数的定义以及解一元一次不等式组,牢记“当时,抛物线与x轴有交点是解题的关键.4、B【解析】

根据坐标平面内点的坐标特征逐项分析即可.【详解】A.若点P(m,2m-2)在第一象限,则有:m>02m-2>0解之得m>1,∴点P可能在第一象限;B.若点P(m,2m-2)在第二象限,则有:m<02m-2>0解之得不等式组无解,∴点P不可能在第二象限;C.若点P(m,2m-2)在第三象限,则有:m<02m-2<0解之得m<1,∴点P可能在第三象限;D.若点P(m,2m-2)在第四象限,则有:m>02m-2<0解之得0<m<1,∴点P可能在第四象限;故选B.【点睛】本题考查了不等式组的解法,坐标平面内点的坐标特征,第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x轴上的点纵坐标为0,y轴上的点横坐标为0.5、B【解析】

根据解不等式组的方法可以求得原不等式组的解集.【详解】,解不等式①,得x>-1,解不等式②,得x>1,由①②可得,x>1,故原不等式组的解集是x>1.故选B.【点睛】本题考查解一元一次不等式组,解题的关键是明确解一元一次不等式组的方法.6、B【解析】分析:由于点P在运动中保持∠APD=90°,所以点P的路径是一段以AD为直径的弧,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,再由勾股定理可得QC的长,再求CP即可.详解:由于点P在运动中保持∠APD=90°,∴点P的路径是一段以AD为直径的弧,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,在Rt△QDC中,QC=,∴CP=QC-QP=,故选B.点睛:本题主要考查的是圆的相关知识和勾股定理,属于中等难度的题型.解决这个问题的关键是根据圆的知识得出点P的运动轨迹.7、A【解析】分析:先根据勾股定理求得BC=6,再由正弦函数的定义求解可得.详解:在Rt△ABC中,∵AB=10、AC=8,∴BC=,∴sinA=.故选:A.点睛:本题主要考查锐角三角函数的定义,解题的关键是掌握勾股定理及正弦函数的定义.8、D【解析】试题解析:设现在弟弟的年龄是x岁,哥哥的年龄是y岁,由题意得y=18-x18-y=y-x故选D.考点:由实际问题抽象出二元一次方程组9、C【解析】

根据题意知小李所对应的坐标是(7,4).故选C.10、D【解析】【分析】根据众数和中位数的定义分别进行求解即可得.【详解】这组数据中42出现了两次,出现次数最多,所以这组数据的众数是42,将这组数据从小到大排序为:37,38,40,42,42,所以这组数据的中位数为40,故选D.【点睛】本题考查了众数和中位数,一组数据中出现次数最多的数据叫做众数.将一组数据从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.11、A【解析】

由题意,因为与反比例函数都是关于直线对称,推出A与B关于直线对称,推出,可得,求出m即可解决问题;【详解】函数与的图象在第二象限交于点,点与反比例函数都是关于直线对称,与B关于直线对称,,,点故选:A.【点睛】本题考查反比例函数与一次函数的交点问题,反比例函数的图像与性质,圆的对称性及轴对称的性质.解题的关键是灵活运用所学知识解决问题,本题的突破点是发现A,B关于直线对称.12、B【解析】

科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.【详解】解:根据科学计数法的定义可得,3000000000=3×109,故选择B.【点睛】本题考查了科学计数法的定义,确定n的值是易错点.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、(15-55).【解析】试题解析:∵C为线段AB的黄金分割点(AC>BC),∴AC=5-12AB=AC=5-1∴BC=AB-AC=10-(55-5)=(15-55)cm.考点:黄金分割.14、﹣1C.【解析】∵将数轴按如图所示从某一点开始折出一个等边三角形ABC,设点A表示的数为x﹣1,点B表示的数为2x+1,点C表示的数为﹣4,∴﹣4﹣(2x+1)=2x+1﹣(x﹣1);∴﹣1x=9,x=﹣1.故A表示的数为:x﹣1=﹣1﹣1=﹣6,点B表示的数为:2x+1=2×(﹣1)+1=﹣5,即等边三角形ABC边长为1,数字2012对应的点与﹣4的距离为:2012+4=2016,∵2016÷1=672,C从出发到2012点滚动672周,∴数字2012对应的点将与△ABC的顶点C重合.故答案为﹣1,C.点睛:此题主要考查了等边三角形的性质,实数与数轴,一元一次方程等知识,本题将数与式的考查有机地融入“图形与几何”中,渗透“数形结合思想”、“方程思想”等,也是一道较优秀的操作活动型问题.15、4π【解析】

根据圆内接四边形对角互补可得∠BCD+∠A=180°,再根据同弧所对的圆周角与圆心角的关系以及∠BOD=∠BCD,可求得∠A=60°,从而得∠BOD=120°,再利用弧长公式进行计算即可得.【详解】解:∵四边形ABCD内接于⊙O,∴∠BCD+∠A=180°,∵∠BOD=2∠A,∠BOD=∠BCD,∴2∠A+∠A=180°,解得:∠A=60°,∴∠BOD=120°,∴的长=,故答案为4π.【点睛】本题考查了圆周角定理、弧长公式等,求得∠A的度数是解题的关键.16、1【解析】

根据垂径定理求得BD,然后根据勾股定理求得即可.【详解】解:∵OD⊥BC,∴BD=CD=BC=3,∵OB=AB=5,∴在Rt△OBD中,OD==1.故答案为1.【点睛】本题考查垂径定理及其勾股定理,熟记定理并灵活应用是本题的解题关键.17、﹣1<x≤1【解析】解一元一次不等式组.【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).因此,解第一个不等式得,x>﹣1,解第二个不等式得,x≤1,∴不等式组的解集是﹣1<x≤1.18、【解析】试题分析:因为OC=OA,所以∠ACO=,所以∠AOC=45°,又直径垂直于弦,,所以CE=,所以CD=2CE=.考点:1.解直角三角形、2.垂径定理.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)A类图书的标价为27元,B类图书的标价为18元;(2)当A类图书每本降价少于3元时,A类图书购进800本,B类图书购进200本,利润最大;当A类图书每本降价大于等于3元,小于5元时,A类图书购进600本,B类图书购进400本,利润最大.【解析】

(1)先设B类图书的标价为x元,则由题意可知A类图书的标价为1.5x元,然后根据题意列出方程,求解即可.(2)先设购进A类图书t本,总利润为w元,则购进B类图书为(1000-t)本,根据题目中所给的信息列出不等式组,求出t的取值范围,然后根据总利润w=总售价-总成本,求出最佳的进货方案.【详解】解:(1)设B类图书的标价为x元,则A类图书的标价为1.5x元,根据题意可得,化简得:540-10x=360,解得:x=18,经检验:x=18是原分式方程的解,且符合题意,则A类图书的标价为:1.5x=1.5×18=27(元),答:A类图书的标价为27元,B类图书的标价为18元;(2)设购进A类图书t本,总利润为w元,A类图书的标价为(27-a)元(0<a<5),由题意得,,解得:600≤t≤800,则总利润w=(27-a-18)t+(18-12)(1000-t)=(9-a)t+6(1000-t)=6000+(3-a)t,故当0<a<3时,3-a>0,t=800时,总利润最大,且大于6000元;当a=3时,3-a=0,无论t值如何变化,总利润均为6000元;当3<a<5时,3-a<0,t=600时,总利润最大,且小于6000元;答:当A类图书每本降价少于3元时,A类图书购进800本,B类图书购进200本时,利润最大;当A类图书每本降价大于等于3元,小于5元时,A类图书购进600本,B类图书购进400本时,利润最大.【点睛】本题考查了一次函数的应用,分式方程的应用、一元一次不等式组的应用、一次函数的最值问题,解答本题的关键在于读懂题意,设出未知数,找出合适的等量关系,列出方程和不等式组求解.20、(1)80,12,28;(2)36°;(3)140人;(4)【解析】

(1)用D组的频数除以它所占的百分比得到样本容量;用样本容量乘以B组所占的百分比得到m的值,然后用样本容量分别减去其它各组的频数即可得到n的值;(2)用E组所占的百分比乘以360°得到α的值;(3)利用样本估计整体,用700乘以A、B两组的频率和可估计体育测试成绩在A、B两个等级的人数;(4)画树状图展示所有12种等可能的结果数,再找出恰好抽到甲和乙的结果数,然后根据概率公式求解.【详解】(1)24÷30%=80,所以样本容量为80;m=80×15%=12,n=80﹣12﹣4﹣24﹣8﹣4=28;故答案为80,12,28;(2)E等级对应扇形的圆心角α的度数=×360°=36°;(3)700×=140,所以估计体育测试成绩在A、B两个等级的人数共有140人;(4)画树状图如下:共12种等可能的结果数,其中恰好抽到甲和乙的结果数为2,所以恰好抽到甲和乙的概率=.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.也考查了统计图.21、(1)详见解析;(2)详见解析;(3)【解析】

(1)利用等腰三角形的性质和三角形内角和即可得出结论;

(2)先判断出OE=AC,即可得出OE=BD,即可得出结论;

(3)先判断出△ABE是底角是30°的等腰三角形,即可构造直角三角形即可得出结论.【详解】(1)∵AD=BD,

∴∠B=∠BAD,

∵AD=CD,

∴∠C=∠CAD,

在△ABC中,∠B+∠C+∠BAC=180°,

∴∠B+∠C+∠BAD+∠CAD=∠B+∠C+∠B+∠C=180°

∴∠B+∠C=90°,

∴∠BAC=90°,(2)如图②,连接与,交点为,连接四边形是矩形(3)如图3,过点做于点四边形是矩形,是等边三角形,由(2)知,在中,,【点睛】此题是四边形综合题,主要考查了矩形是性质,直角三角形的性质和判定,含30°角的直角三角形的性质,三角形的内角和公式,解(1)的关键是判断出∠B=∠BAD,解(2)的关键是判断出OE=AC,解(3)的关键是判断出△ABE是底角为30°的等腰三角形,进而构造直角三角形.22、解:(1)yA=27x+270,yB=30x+240;(2)当2≤x<10时,到B超市购买划算,当x=10时,两家超市一样划算,当x>10时在A超市购买划算;(3)先选择B超市购买10副羽毛球拍,然后在A超市购买130个羽毛球.【解析】

(1)根据购买费用=单价×数量建立关系就可以表示出yA、yB的解析式;(2)分三种情况进行讨论,当yA=yB时,当yA>yB时,当yA<yB时,分别求出购买划算的方案;(3)分两种情况进行讨论计算求出需要的费用,再进行比较就可以求出结论.【详解】解:(1)由题意,得yA=(10×30+3×10x)×0.9=27x+270;yB=10×30+3(10x﹣20)=30x+240;(2)当yA=yB时,27x+270=30x+240,得x=10;当yA>yB时,27x+270>30x+240,得x<10;当yA<yB时,27x+270<30x+240,得x>10∴当2≤x<10时,到B超市购买划算,当x=10时,两家超市一样划算,当x>10时在A超市购买划算.(3)由题意知x=15,15>10,∴选择A超市,yA=27×15+270=675(元),先选择B超市购买10副羽毛球拍,送20个羽毛球,然后在A超市购买剩下的羽毛球:(10×15﹣20)×3×0.9=351(元),共需要费用10×30+351=651(元).∵651元<675元,∴最佳方案是先选择B超市购买10副羽毛球拍,然后在A超市购买130个羽毛球.【点睛】本题考查一次函数的应用,根据题意确列出函数关系式是本题的解题关键.23、(1)证明见解析;(2)①30°,②45°【解析】试题分析:(1)根据已知条件求得∠OAC=∠OCA,∠AOD=∠ADO,然后根据三角形内角和定理得出∠AOC=∠OAD,从而证得OC∥AD,即可证得结论;

(2)①若四边形OCAD是菱形,则OC=AC,从而证得OC=OA=AC,得出∠即可求得

②AD与相切,根据切线的性质得出根据AD∥OC,内错角相等得出从而求得试题解析:(方法不唯一)(1)∵OA=OC,AD=OC,∴OA=AD,∴∠OAC=∠OCA,∠AOD=∠ADO,∵OD∥AC,∴∠OAC=∠AOD,∴∠OAC=∠OCA=∠AOD=∠ADO,∴∠AOC=∠OAD,∴OC∥AD,∴四边形OCAD是平行四边形;(2)①∵四边形OCAD是菱形,∴OC=AC,又∵OC=OA,∴OC=OA=AC,∴∴故答案为②∵AD与相切,∴∵AD∥OC,∴∴故答案为24、(1)BD,CE的关系是相等;(2)或;(3)1,1【解析】分析:(1)依据△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,即可BA=CA,∠BAD=∠CAE,DA=EA,进而得到△ABD≌△ACE,可得出BD=CE;(2)分两种情况:依据∠PDA=∠AEC,∠PCD=∠ACE,可得△PCD∽△ACE,即可得到=,进而得到PD=;依据∠ABD=∠PBE,∠BAD=∠BPE=90°,可得△BAD∽△BPE,即可得到,进而得出PB=,PD=BD+PB=;(3)以A为圆心,AC长为半径画圆,当CE在⊙A下方与⊙A相切时,PD的值最小;当CE在在⊙A右上方与⊙A相切时,PD的值最大.在Rt△PED中,PD=DE•sin∠PED,因此锐角∠PED的大小直接决定了PD的大小.分两种情况进行讨论,即可得到旋转过程中线段PD的最小值以及最大值.详解:(1)BD,CE的关系是相等.理由:∵△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,∴BA=CA,∠BAD=∠CAE,DA=EA,∴△ABD≌△ACE,∴BD=CE;故答案为相等.(2)作出旋转后的图形,若点C在AD上,如图2所示:∵∠EAC=90°,∴CE=,∵∠PDA=∠AEC,∠PCD=∠ACE,∴△PCD∽△ACE,∴,∴PD=;若点B在AE上,如图2所示:∵∠BAD=90°,∴Rt△ABD中,BD=,BE=AE﹣AB=2,∵∠ABD=∠PBE,∠BAD=∠BPE=90°,∴△BAD∽△BPE,∴,即,解得PB=,∴PD=BD+PB=+=,故答案为或;(3)如图3所示,以A为圆心,AC长为半径画圆,当CE在⊙A下方与⊙A相切时,PD的值最小;当CE在在⊙A右上方与⊙A相切时,PD的值最大.如图3所示,分两种情况讨论:在Rt△PED中,PD=DE•sin∠PED,因此锐角∠PED的大小直接决定了PD的大小.①当小三角形旋转到图中△ACB的位置时,在Rt△ACE中,CE==4,在Rt△DAE中,DE=,∵四边形ACPB是正方形,∴PC=AB=3,∴PE=3+4=1,在Rt△PDE中,PD=,即旋转过程中线段PD的最小值为1;②当小三角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论