




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年河北省保定市冀英校中考押题数学预测卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(共10小题,每小题3分,共30分)1.计算(—2)2-3的值是()A、1B、2C、—1D、—22.如图的几何体是由五个小正方体组合而成的,则这个几何体的左视图是()A. B.C. D.3.如图,有5个相同的小立方体搭成的几何体如图所示,则它的左视图是()A. B. C. D.4.下列事件中,必然事件是()A.若ab=0,则a=0B.若|a|=4,则a=±4C.一个多边形的内角和为1000°D.若两直线被第三条直线所截,则同位角相等5.一艘在南北航线上的测量船,于A点处测得海岛B在点A的南偏东30°方向,继续向南航行30海里到达C点时,测得海岛B在C点的北偏东15°方向,那么海岛B离此航线的最近距离是()(结果保留小数点后两位)(参考数据:3≈1.732,2≈1.414)A.4.64海里B.5.49海里C.6.12海里D.6.21海里6.已知3x+y=6,则xy的最大值为()A.2 B.3 C.4 D.67.二次函数(a≠0)的图象如图所示,则下列命题中正确的是()A.a>b>cB.一次函数y=ax+c的图象不经第四象限C.m(am+b)+b<a(m是任意实数)D.3b+2c>08.PM2.5是指大气中直径小于或等于2.5μm(0.0000025m)的颗粒物,含有大量有毒、有害物质,也称为可入肺颗粒物,将25微米用科学记数法可表示为()米.A.25×10﹣7B.2.5×10﹣6C.0.25×10﹣5D.2.5×10﹣59.下列各数:π,sin30°,﹣,其中无理数的个数是()A.1个 B.2个 C.3个 D.4个10.下列式子成立的有()个①﹣的倒数是﹣2②(﹣2a2)3=﹣8a5③()=﹣2④方程x2﹣3x+1=0有两个不等的实数根A.1 B.2 C.3 D.4二、填空题(本大题共6个小题,每小题3分,共18分)11.如图所示,在等腰△ABC中,AB=AC,∠A=36°,将△ABC中的∠A沿DE向下翻折,使点A落在点C处.若AE=,则BC的长是_____.12.如果一个正多边形每一个内角都等于144°,那么这个正多边形的边数是____.13.若一个多边形的每一个外角都等于40°,则这个多边形的边数是.14.“五一”期间,一批九年级同学包租一辆面包车前去竹海游览,面包车的租金为300元,出发时,又增加了4名同学,且租金不变,这样每个同学比原来少分摊了20元车费.若设参加游览的同学一共有x人,为求x,可列方程_____.15.如图,为了测量铁塔AB高度,在离铁塔底部(点B)60米的C处,测得塔顶A的仰角为30°,那么铁塔的高度AB=________米.16.已知m、n是一元二次方程x2+4x﹣1=0的两实数根,则=_____.三、解答题(共8题,共72分)17.(8分)在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是边AB上一点,以BD为直径的⊙O经过点E,且交BC于点F.(1)求证:AC是⊙O的切线;(2)若BF=6,⊙O的半径为5,求CE的长.18.(8分)如图,在四边形中,为的中点,于点,,,,求的度数.19.(8分)如图,一次函数y=ax﹣1的图象与反比例函数的图象交于A,B两点,与x轴交于点C,与y轴交于点D,已知OA=,tan∠AOC=(1)求a,k的值及点B的坐标;(2)观察图象,请直接写出不等式ax﹣1≥的解集;(3)在y轴上存在一点P,使得△PDC与△ODC相似,请你求出P点的坐标.20.(8分)太阳能光伏建筑是现代绿色环保建筑之一,老张准备把自家屋顶改建成光伏瓦面,改建前屋顶截面△ABC如图2所示,BC=10米,∠ABC=∠ACB=36°,改建后顶点D在BA的延长线上,且∠BDC=90°,求改建后南屋面边沿增加部分AD的长.(结果精确到0.1米)21.(8分)如图,已知抛物线与x轴负半轴相交于点A,与y轴正半轴相交于点B,,直线l过A、B两点,点D为线段AB上一动点,过点D作轴于点C,交抛物线于点
E.(1)求抛物线的解析式;(2)若抛物线与x轴正半轴交于点F,设点D的横坐标为x,四边形FAEB的面积为S,请写出S与x的函数关系式,并判断S是否存在最大值,如果存在,求出这个最大值;并写出此时点E的坐标;如果不存在,请说明理由.(3)连接BE,是否存在点D,使得和相似?若存在,求出点D的坐标;若不存在,说明理由.22.(10分)如图,在平面直角坐标系中,直线y=x+2与坐标轴交于A、B两点,点A在x轴上,点B在y轴上,C点的坐标为(1,0),抛物线y=ax2+bx+c经过点A、B、C.(1)求该抛物线的解析式;(2)根据图象直接写出不等式ax2+(b﹣1)x+c>2的解集;(3)点P是抛物线上一动点,且在直线AB上方,过点P作AB的垂线段,垂足为Q点.当PQ=时,求P点坐标.23.(12分)如图,在▱ABCD中,点O是对角线AC、BD的交点,点E是边CD的中点,点F在BC的延长线上,且CF=BC,求证:四边形OCFE是平行四边形.24.如图,△ABC中,CD是边AB上的高,且.求证:△ACD∽△CBD;求∠ACB的大小.
参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】本题考查的是有理数的混合运算根据有理数的加法、乘方法则,先算乘方,再算加法,即得结果。解答本题的关键是掌握好有理数的加法、乘方法则。2、D【解析】
找到从左面看到的图形即可.【详解】从左面上看是D项的图形.故选D.【点睛】本题考查三视图的知识,左视图是从物体左面看到的视图.3、C【解析】试题解析:左视图如图所示:故选C.4、B【解析】
直接利用绝对值的性质以及多边形的性质和平行线的性质分别分析得出答案.【详解】解:A、若ab=0,则a=0,是随机事件,故此选项错误;B、若|a|=4,则a=±4,是必然事件,故此选项正确;C、一个多边形的内角和为1000°,是不可能事件,故此选项错误;D、若两直线被第三条直线所截,则同位角相等,是随机事件,故此选项错误;故选:B.【点睛】此题主要考查了事件的判别,正确把握各命题的正确性是解题关键.5、B【解析】
根据题意画出图如图所示:作BD⊥AC,取BE=CE,根据三角形内角和和等腰三角形的性质得出BA=BE,AD=DE,设BD=x,Rt△ABD中,根据勾股定理得AD=DE=
3x,AB=BE=CE=2x,由AC=AD+DE+EC=2
3x+2x=30,解之即可得出答案.【详解】根据题意画出图如图所示:作BD⊥AC,取BE=CE,
∵AC=30,∠CAB=30°∠ACB=15°,
∴∠ABC=135°,
又∵BE=CE,
∴∠ACB=∠EBC=15°,
∴∠ABE=120°,
又∵∠CAB=30°
∴BA=BE,AD=DE,
设BD=x,
在Rt△ABD中,
∴AD=DE=
3x,AB=BE=CE=2x,
∴AC=AD+DE+EC=2
3x+2x=30,
∴x=153+1
=
15【点睛】本题考查了三角形内角和定理与等腰直角三角形的性质,解题的关键是熟练的掌握三角形内角和定理与等腰直角三角形的性质.6、B【解析】
根据已知方程得到y=-1x+6,将其代入所求的代数式后得到:xy=-1x2+6x,利用配方法求该式的最值.【详解】解:∵1x+y=6,∴y=-1x+6,∴xy=-1x2+6x=-1(x-1)2+1.∵(x-1)2≥0,∴-1(x-1)2+1≤1,即xy的最大值为1.故选B.【点睛】考查了二次函数的最值,解题时,利用配方法和非负数的性质求得xy的最大值.7、D【解析】解:A.由二次函数的图象开口向上可得a>0,由抛物线与y轴交于x轴下方可得c<0,由x=﹣1,得出=﹣1,故b>0,b=2a,则b>a>c,故此选项错误;B.∵a>0,c<0,∴一次函数y=ax+c的图象经一、三、四象限,故此选项错误;C.当x=﹣1时,y最小,即a﹣b﹣c最小,故a﹣b﹣c<am2+bm+c,即m(am+b)+b>a,故此选项错误;D.由图象可知x=1,a+b+c>0①,∵对称轴x=﹣1,当x=1,y>0,∴当x=﹣3时,y>0,即9a﹣3b+c>0②①+②得10a﹣2b+2c>0,∵b=2a,∴得出3b+2c>0,故选项正确;故选D.点睛:此题主要考查了图象与二次函数系数之间的关系,二次函数与方程之间的转换,会利用特殊值代入法求得特殊的式子,如:y=a+b+c,然后根据图象判断其值.8、B【解析】
由科学计数法的概念表示出0.0000025即可.【详解】0.0000025=2.5×10﹣6.故选B.【点睛】本题主要考查科学计数法,熟记相关概念是解题关键.9、B【解析】
根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数即可.【详解】sin30°=,=3,故无理数有π,-,故选:B.【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.10、B【解析】
根据倒数的定义,幂的乘方、二次根式的混合运算法则以及根的判别式进行判断.【详解】解:①﹣的倒数是﹣2,故正确;②(﹣2a2)3=﹣8a6,故错误;③(-)=﹣2,故错误;④因为△=(﹣3)2﹣4×1×1=5>0,所以方程x2﹣3x+1=0有两个不等的实数根,故正确.故选B.【点睛】考查了倒数的定义,幂的乘方、二次根式的混合运算法则以及根的判别式,属于比较基础的题目,熟记计算法则即可解答.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】【分析】由折叠的性质可知AE=CE,再证明△BCE是等腰三角形即可得到BC=CE,问题得解.【详解】∵AB=AC,∠A=36°,∴∠B=∠ACB==72°,∵将△ABC中的∠A沿DE向下翻折,使点A落在点C处,∴AE=CE,∠A=∠ECA=36°,∴∠CEB=72°,∴BC=CE=AE=,故答案为.【点睛】本题考查了等腰三角形的判断和性质、折叠的性质以及三角形内角和定理的运用,证明△BCE是等腰三角形是解题的关键.12、1【解析】
设正多边形的边数为n,然后根据多边形的内角和公式列方程求解即可.【详解】解:设正多边形的边数为n,由题意得,=144°,解得n=1.故答案为1.【点睛】本题考查了多边形的内角与外角,熟记公式并准确列出方程是解题的关键.13、9【解析】解:360÷40=9,即这个多边形的边数是914、﹣=1.【解析】原有的同学每人分担的车费应该为,而实际每人分担的车费为,方程应该表示为:﹣=1.故答案是:﹣=1.15、20【解析】
在Rt△ABC中,直接利用tan∠ACB=tan30°==即可.【详解】在Rt△ABC中,tan∠ACB=tan30°==,BC=60,解得AB=20.故答案为20.【点睛】本题考查的知识点是解三角形的实际应用,解题的关键是熟练的掌握解三角形的实际应用.16、1【解析】
先由根与系数的关系求出m•n及m+n的值,再把化为的形式代入进行计算即可.【详解】∵m、n是一元二次方程x2+1x﹣1=0的两实数根,∴m+n=﹣1,m•n=﹣1,∴===1.故答案为1.【点睛】本题考查的是根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系为:x1+x2=﹣,x1•x2=.三、解答题(共8题,共72分)17、(1)证明见解析;(2)CE=1.【解析】
(1)根据等角对等边得∠OBE=∠OEB,由角平分线的定义可得∠OBE=∠EBC,从而可得∠OEB=∠EBC,根据内错角相等,两直线平行可得OE∥BC,根据两直线平行,同位角相等可得∠OEA=90°,从而可证AC是⊙O的切线.
(2)根据垂径定理可求BH=BF=3,根据三个角是直角的四边形是矩形,可得四边形OHCE是矩形,由矩形的对边相等可得CE=OH,在Rt△OBH中,利用勾股定理可求出OH的长,从而求出CE的长.【详解】(1)证明:如图,连接OE,
∵OB=OE,
∴∠OBE=∠OEB,
∵BE平分∠ABC.
∴∠OBE=∠EBC,
∴∠OEB=∠EBC,
∴OE∥BC,
∵∠ACB=90°,
∴∠OEA=∠ACB=90°,
∴AC是⊙O的切线.
(2)解:过O作OH⊥BF,
∴BH=BF=3,四边形OHCE是矩形,
∴CE=OH,
在Rt△OBH中,BH=3,OB=5,
∴OH==1,
∴CE=1.【点睛】本题考查切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线和垂径定理以及勾股定理的运用,具有一定的综合性.18、【解析】
连接,根据线段垂直平分线的性质得到,根据等腰三角形的性质、三角形内角和定理计算即可.【详解】连接,∵为的中点,于点,∴,∴,∵,∴,∵,∴,∵,∴,∴,∴.【点睛】本题考查的是线段垂直平分线的性质、等腰三角形的性质以及三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.19、(1)a=,k=3,B(-,-2)(2)﹣≤x<0或x≥3;(3)(0,)或(0,0)【解析】
1)过A作AE⊥x轴,交x轴于点E,在Rt△AOE中,根据tan∠AOC的值,设AE=x,得到OE=3x,再由OA的长,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出A坐标,将A坐标代入一次函数解析式求出a的值,代入反比例解析式求出k的值,联立一次函数与反比例函数解析式求出B的坐标;(2)由A与B交点横坐标,根据函数图象确定出所求不等式的解集即可;(3)显然P与O重合时,满足△PDC与△ODC相似;当PC⊥CD,即∠PCD=时,满足三角形PDC与三角形CDO相等,利用同角的余角相等得到一对角相等,再由一对直角相等得到三角形PCO与三角形CDO相似,由相似得比例,根据OD,OC的长求出OP的长,即可确定出P的坐标.【详解】解:(1)过A作AE⊥x轴,交x轴于点E,在Rt△AOE中,OA=,tan∠AOC=,设AE=x,则OE=3x,根据勾股定理得:OA2=OE2+AE2,即10=9x2+x2,解得:x=1或x=﹣1(舍去),∴OE=3,AE=1,即A(3,1),将A坐标代入一次函数y=ax﹣1中,得:1=3a﹣1,即a=,将A坐标代入反比例解析式得:1=,即k=3,联立一次函数与反比例解析式得:,消去y得:x﹣1=,解得:x=﹣或x=3,将x=﹣代入得:y=﹣1﹣1=﹣2,即B(﹣,﹣2);(2)由A(3,1),B(﹣,﹣2),根据图象得:不等式x﹣1≥的解集为﹣≤x<0或x≥3;(3)显然P与O重合时,△PDC∽△ODC;当PC⊥CD,即∠PCD=90°时,∠PCO+∠DCO=90°,∵∠PCD=∠COD=90°,∠PCD=∠CDO,∴△PDC∽△CDO,∵∠PCO+∠CPO=90°,∴∠DCO=∠CPO,∵∠POC=∠COD=90°,∴△PCO∽△CDO,∴=,对于一次函数解析式y=x﹣1,令x=0,得到y=﹣1;令y=0,得到x=,∴C(,0),D(0,﹣1),即OC=,OD=1,∴=,即OP=,此时P坐标为(0,),综上,满足题意P的坐标为(0,)或(0,0).【点睛】此题属于反比例函数综合题,涉及的知识有:待定系数法确定函数解析式,一次函数与反比例函数的交点问题,坐标与图形性质,勾股定理,锐角三角函数定义,相似三角形的判定与性质,利用了数形结合的思想,熟练运用数形结合思想是解题的关键.20、1.9米【解析】试题分析:在直角三角形BCD中,由BC与sinB的值,利用锐角三角函数定义求出CD的长,在直角三角形ACD中,由∠ACD度数,以及CD的长,利用锐角三角函数定义求出AD的长即可.试题解析:∵∠BDC=90°,BC=10,sinB=,∴CD=BC•sinB=10×0.2=5.9,∵在Rt△BCD中,∠BCD=90°﹣∠B=90°﹣36°=54°,∴∠ACD=∠BCD﹣∠ACB=54°﹣36°=18°,∴在Rt△ACD中,tan∠ACD=,∴AD=CD•tan∠ACD=5.9×0.32=1.888≈1.9(米),则改建后南屋面边沿增加部分AD的长约为1.9米.考点:解直角三角形的应用21、(1);(2)与x的函数关系式为,S存在最大值,最大值为18,此时点E的坐标为.(3)存在点D,使得和相似,此时点D的坐标为或.【解析】
利用二次函数图象上点的坐标特征可得出点A、B的坐标,结合即可得出关于a的一元一次方程,解之即可得出结论;由点A、B的坐标可得出直线AB的解析式待定系数法,由点D的横坐标可得出点D、E的坐标,进而可得出DE的长度,利用三角形的面积公式结合即可得出S关于x的函数关系式,再利用二次函数的性质即可解决最值问题;由、,利用相似三角形的判定定理可得出:若要和相似,只需或,设点D的坐标为,则点E的坐标为,进而可得出DE、BD的长度当时,利用等腰直角三角形的性质可得出,进而可得出关于m的一元二次方程,解之取其非零值即可得出结论;当时,由点B的纵坐标可得出点E的纵坐标为4,结合点E的坐标即可得出关于m的一元二次方程,解之取其非零值即可得出结论综上即可得出结论.【详解】当时,有,解得:,,点A的坐标为.当时,,点B的坐标为.,,解得:,抛物线的解析式为.点A的坐标为,点B的坐标为,直线AB的解析式为.点D的横坐标为x,则点D的坐标为,点E的坐标为,如图.点F的坐标为,点A的坐标为,点B的坐标为,,,,.,当时,S取最大值,最大值为18,此时点E的坐标为,与x的函数关系式为,S存在最大值,最大值为18,此时点E的坐标为.,,若要和相似,只需或如图.设点D的坐标为,则点E的坐标为,,当时,,,,为等腰直角三角形.,即,解得:舍去,,点D的坐标为;当时,点E的纵坐标为4,,解得:,舍去,点D的坐标为.综上所述:存在点D,使得和相似,此时点D的坐标为或.故答案为:(1);(2)与x的函数关系式为,S存在最大值,最大值为18,此时点E的坐标为.(3)存在点D,使得和相似,此时点D的坐标为或.【点睛】本题考查了二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、三角形的面积、二次函数的性质、相似三角形的判定、等腰直角三角形以及解一元二次方程,解题的关键是:利用二次函数图象上点的坐标特征求出点A、B的坐标;利用三角形的面积找出S关于x的函数关系式;分及两种情况求出点D的坐标.22、(1)y=﹣x2﹣x+2;(2)﹣2<x<0;(3)P点坐标为(﹣1,2).【解析】分析:(1)、根据题意得出点A和点B的坐标,然后利用待定系数法求出二次函数的解析式;(2)、根据函数图像得出不等式的解集;(3)、作PE⊥x轴于点E,交AB于点D,根据题意得出∠PDQ=∠ADE=45°,PD==1,然后设点P(x,﹣x2﹣x+2),则点D(x,x+2),根据PD的长度得出x的值,从而得出点P的坐标.详解:(1)当y=0时,x+2=0,解得x=﹣2,当x=0时,y=0+2=2,则点A(﹣2,0),B(0,2),把A(﹣2,0),C(1,0),B(0,2),分别代入y=ax2+bx+c得,解得.∴该抛物线的解析式为y=﹣x2﹣x+2;(2)ax2+(b
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年摇篮大班语言学习指南发布
- 农业公司饭堂承包合同(3篇)
- 销售主管年度个人总结(9篇)
- 平安租赁汽车金融创意提案
- 平安青岛国信综合融资方案
- 2025年市场调查与预测教案:针对初创企业的市场预测模型
- 物理高中:《力学概念复习课教案》
- 农业可持续发展路径方案
- 2025年黄石道路运输从业资格证考哪些项目
- 确保信息准确性的内容校验
- 《汽车专业英语》2024年课程标准(含课程思政设计)
- 部编四年级道德与法治下册全册教案(含反思)
- JBT 11699-2013 高处作业吊篮安装、拆卸、使用技术规程
- AutoCAD 2020中文版从入门到精通(标准版)
- 烟草栽培(二级)鉴定理论考试复习题库-上(单选题汇总)
- 美的职位与职衔管理手册
- 医学装备科医院设备绩效管理修订方案
- 散文课堂教学评价重点标准
- 桥梁钢筋加工安装
- 动物生物化学(全套577PPT课件)
- 中国传统二十四节气立春节气介绍PPT模板课件
评论
0/150
提交评论